[1]
H. Mousavi, Y. Mortazavi, A.A. Khodadadi, M.H. Saberi and S. Alirezaei, Enormous enhancement of Pt/SnO2 sensors response and selectivity by their reduction, to CO in automotive exhaust gas pollutants including CO, NOx and C3H8, Appl. Surf. Sci. 546 (2021), p.149120.
DOI: 10.1016/j.apsusc.2021.149120
Google Scholar
[2]
R.A. Witik, J. Payet, V. Michaud, C. Ludwig and J.A.E. Månson, Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications, Compos. Part A Appl. Sci. Manuf. 42 (2011), p.1694–1709.
DOI: 10.1016/j.compositesa.2011.07.024
Google Scholar
[3]
Y. Tan, Y. Zhang, Q. Zhang and F. Fan, Static properties and stability of super-long span aluminum alloy mega-latticed structures, Structures 33 (2021), p.3173–3187.
DOI: 10.1016/j.istruc.2021.06.034
Google Scholar
[4]
J. Dong, Y. Wang, F. Jin and H. Fan, Crushing behaviors of buckling-induced metallic meta-lattice structures, Def. Technol. (2021).
Google Scholar
[5]
A. Forcellese, L. Greco, M. Pieralisi, M. Simoncini and G. Trevisan, Mechanical properties of carbon fiber reinforced plastic obtained by the automatic deposition of an innovative towpreg, in Procedia CIRP, 88 (2020), p.451–456.
DOI: 10.1016/j.procir.2020.05.078
Google Scholar
[6]
A. Forcellese, T. Mancia, A.C. Russo, M. Simoncini and A. Vita, Robotic automated fiber placement of carbon fiber towpregs, Mater. Manuf. Process. (2021),.
DOI: 10.1080/10426914.2021.1885706
Google Scholar
[7]
V. V. Vasiliev, V.A. Barynin and A.F. Razin, Anisogrid composite lattice structures – Development and aerospace applications, Compos. Struct. 94 (2012), p.1117–1127.
DOI: 10.1016/j.compstruct.2011.10.023
Google Scholar
[8]
Y.G. Lee and D.O. Lee, Manufacturing technique and verification for the mechanical fastening section of carbon fiber reinforced anisogrid composite structures, Compos. Struct. 268 (2021), p.113895.
DOI: 10.1016/j.compstruct.2021.113895
Google Scholar
[9]
D. Wang and M.M. Abdalla, Global and local buckling analysis of grid-stiffened composite panels, Compos. Struct. 119 (2015), p.767–776.
DOI: 10.1016/j.compstruct.2014.09.050
Google Scholar
[10]
Q. Zheng, D. Jiang, C. Huang, X. Shang and S. Ju, Analysis of failure loads and optimal design of composite lattice cylinder under axial compression, Compos. Struct. 131 (2015), p.885–894.
DOI: 10.1016/j.compstruct.2015.06.047
Google Scholar
[11]
H. Wang, P. Li and J. Wang, Shape optimization and buckling analysis of novel two-way aluminum alloy latticed shells, J. Build. Eng. 36 (2021), p.102100.
DOI: 10.1016/j.jobe.2020.102100
Google Scholar
[12]
Meyer and R. R., Isogrid structure, (1972).
Google Scholar
[13]
S.M. Huybrechts, S.E. Hahn and T.E. Meink, Grid stiffened structures: a survey of fabrication, analysis and design methods, in ICCM12 - Conference Proceedings, (1999).
Google Scholar
[14]
F. Ning, W. Cong, J. Qiu, J. Wei and S. Wang, Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Compos. Part B Eng. 80 (2015), p.369–378.
DOI: 10.1016/j.compositesb.2015.06.013
Google Scholar
[15]
M. Rimašauskas, T. Kuncius and R. Rimašauskienė, Processing of carbon fiber for 3D printed continuous composite structures, Mater. Manuf. Process. 34 (2019), p.1528–1536.
DOI: 10.1080/10426914.2019.1655152
Google Scholar
[16]
A. Forcellese, M. Simoncini, A. Vita and V. Di Pompeo, 3D printing and testing of composite isogrid structures, Int. J. Adv. Manuf. Technol. 109 (2020), p.1881–1893.
DOI: 10.1007/s00170-020-05770-4
Google Scholar
[17]
G. Totaro, F. De Nicola and P. Caramuta, Local buckling modelling of anisogrid lattice structures with hexagonal cells: An experimental verification, Compos. Struct. 106 (2013), p.734–741.
DOI: 10.1016/j.compstruct.2013.07.031
Google Scholar
[18]
D. Santoro, D. Bellisario, F. Quadrini and L. Santo, Anisogrid thermoplastic composite lattice structure by innovative out-of-autoclave process, Int. J. Adv. Manuf. Technol. 109 (2020), p.1941–(1952).
DOI: 10.1007/s00170-020-05671-6
Google Scholar
[19]
V. Di Pompeo, A. Forcellese, T. Mancia, M. Simoncini and A. Vita, Effect of Geometric Parameters and Moisture Content on the Mechanical Performances of 3D-Printed Isogrid Structures in Short Carbon Fiber-Reinforced Polyamide, J. Mater. Eng. Perform. 30 (2021), p.5100–5107.
DOI: 10.1007/s11665-021-05659-7
Google Scholar