On the Influence of Cross-Section Size on Measured Strength of SLM-Produced AlSi10Mg-Alloy

Article Preview

Abstract:

The freedom in choice of geometries in additive manufacturing (AM) favors the use of structures with large surface and small cross-section such as lattice structures and thin-walled hollow profiles. On the other hand, the practices of strength testing of metals require a certain bulk of the material to be printed to be able to produce a sample and test material properties. The size of the sample cross section might influence the strength and up to 30% decrease in strength for small struts was reported in the literature. Understanding the influence of the cross-section size on the strength of SLM-produced metal is crucial to be able to relate the strength determined through tensile testing and the strength of an SLM-produced component with complex geometry. This article deals with effect of cross-section size on the measured strength of the SLM-produced AlSi10Mg-alloy. It is demonstrated how the decrease in strength can be explained by the difference between measured and actual cross-section area induced by surface roughness rather than by the difference in microstructure between the samples of different sizes.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] P. Ponnusamy, R. A. R. Rashid, S. H. Masood, D. Ruan, and S. Palanisamy, Mechanical properties of slm-printed aluminium alloys: A review,, Materials (Basel)., vol. 13, no. 19, p.1–51, Oct. 2020,.

DOI: 10.3390/ma13194301

Google Scholar

[2] ASTM, ASTM-F3122-14 Standard Guide for Evaluating Mechanical Properties of Metal Materials Made via Additive Manufacturing Processes 1. (2014).

Google Scholar

[3] A. T. Silvestri et al., Assessment of the Mechanical Properties of AlSi10Mg Parts Produced through Selective Laser Melting Under Different Conditions,, Procedia Manuf., vol. 47, p.1058–1064, Jan. 2020,.

DOI: 10.1016/j.promfg.2020.04.115

Google Scholar

[4] A. Röttger et al., Microstructure and mechanical properties of 316L austenitic stainless steel processed by different SLM devices,, Int. J. Adv. Manuf. Technol. 2020 1083, vol. 108, no. 3, p.769–783, Jul. 2020,.

DOI: 10.1007/s00170-020-05371-1

Google Scholar

[5] D. Vysochinskiy, N. Akhtar, T. Nordmo, M. R. Strand, A. Vyssios, and M. K. Bak, Experimental investigation of effect of printing direction and surface roughness on the mechanical properties of AlSi10Mg-alloy produced by selective laser melting,, Esaform 2021, no. April, p.8–14, 2021,.

DOI: 10.25518/esaform21.3627

Google Scholar

[6] Z. Dong, X. Zhang, W. Shi, H. Zhou, H. Lei, and J. Liang, Study of Size Effect on Microstructure and Mechanical Properties of AlSi10Mg Samples Made by Selective Laser Melting,, Mater. 2018, Vol. 11, Page 2463, vol. 11, no. 12, p.2463, Dec. 2018,.

DOI: 10.3390/ma11122463

Google Scholar

[7] N. Takata, H. Kodaira, A. Suzuki, and M. Kobashi, Size dependence of microstructure of AlSi10Mg alloy fabricated by selective laser melting,, Mater. Charact., vol. 143, p.18–26, Sep. 2018,.

DOI: 10.1016/j.matchar.2017.11.052

Google Scholar

[8] N. T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N. M. Everitt, The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment,, Mater. Sci. Eng. A, vol. 667, p.139–146, Jun. 2016,.

DOI: 10.1016/j.msea.2016.04.092

Google Scholar

[9] A. Bin Anwar and Q. C. Pham, Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength,, J. Mater. Process. Technol., vol. 240, p.388–396, Feb. (2017).

DOI: 10.1016/j.jmatprotec.2016.10.015

Google Scholar

[10] B. J. Mfusi, N. R. Mathe, L. C. Tshabalala, and P. A. Popoola, The Effect of Stress Relief on the Mechanical and Fatigue Properties of Additively Manufactured AlSi10Mg Parts,, Met. 2019, Vol. 9, Page 1216, vol. 9, no. 11, p.1216, Nov. 2019,.

DOI: 10.3390/met9111216

Google Scholar

[11] K. G. Prashanth, S. Scudino, and J. Eckert, Defining the tensile properties of Al-12Si parts produced by selective laser melting,, Acta Mater., vol. 126, p.25–35, Mar. 2017,.

DOI: 10.1016/j.actamat.2016.12.044

Google Scholar

[12] C. H. S. Rakesh, N. Priyanka, R. Jayaganthan, and N. J. Vasa, Effect of build atmosphere on the mechanical properties of AlSi10Mg produced by selective laser melting,, Mater. Today Proc., vol. 5, no. 9, p.17231–17238, Jan. 2018,.

DOI: 10.1016/j.matpr.2018.04.133

Google Scholar

[13] H. Rao, S. Giet, K. Yang, X. Wu, and C. H. J. Davies, The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting,, Mater. Des., vol. 109, p.334–346, Nov. 2016,.

DOI: 10.1016/j.matdes.2016.07.009

Google Scholar

[14] R. Rashid et al., Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy,, Addit. Manuf., vol. 22, p.426–439, Aug. 2018,.

DOI: 10.1016/j.addma.2018.05.040

Google Scholar

[15] I. Rosenthal, A. Stern, and N. Frage, Microstructure and Mechanical Properties of AlSi10Mg Parts Produced by the Laser Beam Additive Manufacturing (AM) Technology,, Metallogr. Microstruct. Anal., vol. 3, no. 6, p.448–453, Dec. 2014,.

DOI: 10.1007/s13632-014-0168-y

Google Scholar

[16] I. Rosenthal, A. Stern, and N. Frage, Strain rate sensitivity and fracture mechanism of AlSi10Mg parts produced by Selective Laser Melting,, Mater. Sci. Eng. A, vol. 682, p.509–517, Jan. 2017,.

DOI: 10.1016/j.msea.2016.11.070

Google Scholar

[17] S. Siddique, M. Awd, J. Tenkamp, and F. Walther, High and very high cycle fatigue failure mechanisms in selective laser melted aluminum alloys,, J. Mater. Res., vol. 32, no. 23, p.4296–4304, Dec. 2017,.

DOI: 10.1557/jmr.2017.314

Google Scholar

[18] S. Siddique, M. Imran, E. Wycisk, C. Emmelmann, and F. Walther, Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting,, J. Mater. Process. Technol., vol. 221, p.205–213, Jul. 2015,.

DOI: 10.1016/j.jmatprotec.2015.02.023

Google Scholar

[19] M. Tang, P. C. Pistorius, S. Narra, and J. L. Beuth, Rapid Solidification: Selective Laser Melting of AlSi10Mg,, Springer,.

DOI: 10.1007/s11837-015-1763-3

Google Scholar

[20] A. Aversa et al., Effect of Process and Post-Process Conditions on the Mechanical Properties of an A357 Alloy Produced via Laser Powder Bed Fusion,, Met. 2017, Vol. 7, Page 68, vol. 7, no. 2, p.68, Feb. 2017,.

DOI: 10.3390/met7020068

Google Scholar

[21] U. Tradowsky, J. White, R. M. Ward, N. Read, W. Reimers, and M. M. Attallah, Selective laser melting of AlSi10Mg: Influence of post-processing on the microstructural and tensile properties development,, Mater. Des., vol. 105, p.212–222, Sep. 2016,.

DOI: 10.1016/j.matdes.2016.05.066

Google Scholar

[22] N. E. Uzan, R. Shneck, O. Yeheskel, and N. Frage, Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM),, 2017,.

DOI: 10.1016/j.msea.2017.08.027

Google Scholar

[23] M. Awd, F. Stern, A. Kampmann, D. Kotzem, J. Tenkamp, and F. Walther, Microstructural Characterization of the Anisotropy and Cyclic Deformation Behavior of Selective Laser Melted AlSi10Mg Structures,, Met. 2018, Vol. 8, Page 825, vol. 8, no. 10, p.825, Oct. 2018,.

DOI: 10.3390/met8100825

Google Scholar

[24] R. Casati, M. H. Nasab, M. Coduri, V. Tirelli, and M. Vedani, Effects of Platform Pre-Heating and Thermal-Treatment Strategies on Properties of AlSi10Mg Alloy Processed by Selective Laser Melting,, Met. 2018, Vol. 8, Page 954, vol. 8, no. 11, p.954, Nov. 2018,.

DOI: 10.3390/met8110954

Google Scholar

[25] L. Denti, Additive Manufactured A357.0 Samples Using the Laser Powder Bed Fusion Technique: Shear and Tensile Performance,, Met. 2018, Vol. 8, Page 670, vol. 8, no. 9, p.670, Aug. 2018,.

DOI: 10.3390/met8090670

Google Scholar

[26] T. Kimura and T. Nakamoto, Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting,, Mater. Des., vol. 89, p.1294–1301, Jan. 2016,.

DOI: 10.1016/j.matdes.2015.10.065

Google Scholar

[27] A. H. Maamoun, Y. F. Xue, M. A. Elbestawi, and S. C. Veldhuis, The Effect of Selective Laser Melting Process Parameters on the Microstructure and Mechanical Properties of Al6061 and AlSi10Mg Alloys,, Mater. 2019, Vol. 12, Page 12, vol. 12, no. 1, p.12, Dec. 2018,.

DOI: 10.3390/ma12010012

Google Scholar

[28] T. Maconachie et al., Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg,, vol. 788, p.139445, Jun. 2020, Accessed: Nov. 24, 2020. [Online]. Available: https://doi.org/10.1016/j.msea.2020.139445.

DOI: 10.1016/j.msea.2020.139445

Google Scholar

[29] I. Maskery et al., Fatigue Performance Enhancement of Selectively Laser Melted Aluminium Alloy by Heat Treatment,, Aug. (2015).

Google Scholar

[30] L. Y. Jiang et al., Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting,, Mater. Sci. Eng. A, vol. 734, p.171–177, Sep. 2018,.

DOI: 10.1016/j.msea.2018.07.092

Google Scholar

[31] D.-K. Kim, J.-H. Hwang, E.-Y. Kim, Y.-U. Heo, W. Woo, and S.-H. Choi, Evaluation of the stress-strain relationship of constituent phases in AlSi10Mg alloy produced by selective laser melting using crystal plasticity FEM,, J. Alloys Compd., vol. 714, p.687–697, 2017,.

DOI: 10.1016/j.jallcom.2017.04.264

Google Scholar

[32] A. Majeed, M. Muzamil, J. Lv, B. Liu, and F. Ahmad, Heat treatment influences densification and porosity of AlSi10Mg alloy thin-walled parts manufactured by selective laser melting technique,, J. Brazilian Soc. Mech. Sci. Eng. 2019 416, vol. 41, no. 6, p.1–13, May 2019,.

DOI: 10.1007/s40430-019-1769-9

Google Scholar

[33] P. Y. Sun, Z. K. Zhu, C. Y. Su, L. Lu, C. Y. Zhou, and X. H. He, Experimental characterisation of mechanical behaviour for a TA2 welded joint using digital image correlation,, Opt. Lasers Eng., vol. 115, no. August 2018, p.161–171, 2019,.

DOI: 10.1016/j.optlaseng.2018.11.022

Google Scholar

[34] N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, and M. Kobashi, Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments,, Mater. Sci. Eng. A, vol. 704, p.218–228, Sep. 2017,.

DOI: 10.1016/j.msea.2017.08.029

Google Scholar

[35] W. Li et al., Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism,, Mater. Sci. Eng. A, vol. 663, p.116–125, Apr. 2016,.

DOI: 10.1016/j.msea.2016.03.088

Google Scholar

[36] T. Fiegl, M. Franke, and C. Körner, Impact of build envelope on the properties of additive manufactured parts from AlSi10Mg,, Opt. Laser Technol., vol. 111, p.51–57, Apr. 2019,.

DOI: 10.1016/j.optlastec.2018.08.050

Google Scholar

[37] X. P. Li et al., A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility,, Acta Mater., vol. 95, p.74–82, Aug. 2015,.

DOI: 10.1016/j.actamat.2015.05.017

Google Scholar

[38] J. Suryawanshi, K. G. Prashanth, S. Scudino, J. Eckert, O. Prakash, and U. Ramamurty, Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting,, Acta Mater., vol. 115, p.285–294, Aug. 2016,.

DOI: 10.1016/j.actamat.2016.06.009

Google Scholar

[39] M. Costas, D. Morin, M. de Lucio, and M. Langseth, Testing and simulation of additively manufactured AlSi10Mg components under quasi-static loading,, Eur. J. Mech. A/Solids, vol. 81, p.103966, May 2020,.

DOI: 10.1016/j.euromechsol.2020.103966

Google Scholar

[40] R. Subbiah, J. Bensingh, A. Kader, and S. Nayak, Influence of printing parameters on structures, mechanical properties and surface characterization of aluminium alloy manufactured using selective laser melting,, Int. J. Adv. Manuf. Technol., vol. 106, no. 11–12, p.5137–5147, Feb. 2020,.

DOI: 10.1007/s00170-020-04929-3

Google Scholar

[41] M. Fousová, D. Dvorský, A. Michalcová, and D. Vojtěch, Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures,, Mater. Charact., vol. 137, p.119–126, Mar. 2018,.

DOI: 10.1016/j.matchar.2018.01.028

Google Scholar

[42] A. Iturrioz, E. Gil, M. M. Petite, F. Garciandia, A. M. Mancisidor, and M. San Sebastian, Selective laser melting of AlSi10Mg alloy: influence of heat treatment condition on mechanical properties and microstructure,, Weld. World 2018 624, vol. 62, no. 4, p.885–892, Apr. 2018,.

DOI: 10.1007/s40194-018-0592-8

Google Scholar

[43] A. Pola et al., Evaluation on the fatigue behavior of sand-blasted AlSi10Mg obtained by DMLS,, Frat. ed Integrità Strutt., vol. 13, no. 49, p.775–790, Jun. 2019,.

DOI: 10.3221/igf-esis.49.69

Google Scholar

[44] C. M. Laursen, S. A. DeJong, S. M. Dickens, A. N. Exil, D. F. Susan, and J. D. Carroll, Relationship between ductility and the porosity of additively manufactured AlSi10Mg,, Mater. Sci. Eng. A, vol. 795, p.139922, Sep. 2020,.

DOI: 10.1016/j.msea.2020.139922

Google Scholar

[45] T. Nordmo, M. R. Strand, and A. Vyssios, Mekaniske egenskaper til selektiv lasersmeltet AlSi10Mg-legering,, University of Agder, 2020. Accessed: Nov. 24, 2020. [Online]. Available: https://uia.brage.unit.no/uia-xmlui/handle/11250/2679275.

Google Scholar

[46] AlSiMg Aluminum Alloy Spherical Powder | Tekna., http://www.tekna.com/spherical-powders/alsimg_aluminum_alloy (accessed Nov. 27, 2020).

Google Scholar

[47] Metalliske materialer : strekkprøving = Metallic materials : tensile testing : part 1 : Method of test at room temperature (ISO 6892-1:2016) : Del 1 : meode for prøving ved romtemperatur (ISO 6892-1:2016), vol. NS-EN ISO. Lysaker: Standard Norge, (2016).

DOI: 10.1201/9781482271362-188

Google Scholar

[48] N. T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting,, Prog. Mater. Sci., vol. 106, p.100578, Dec. 2019,.

DOI: 10.1016/j.pmatsci.2019.100578

Google Scholar

[49] B. C. Salzbrenner et al., High-throughput stochastic tensile performance of additively manufactured stainless steel,, J. Mater. Process. Technol., vol. 241, p.1–12, Mar. 2017,.

Google Scholar