[1]
P. Ponnusamy, R. A. R. Rashid, S. H. Masood, D. Ruan, and S. Palanisamy, Mechanical properties of slm-printed aluminium alloys: A review,, Materials (Basel)., vol. 13, no. 19, p.1–51, Oct. 2020,.
DOI: 10.3390/ma13194301
Google Scholar
[2]
ASTM, ASTM-F3122-14 Standard Guide for Evaluating Mechanical Properties of Metal Materials Made via Additive Manufacturing Processes 1. (2014).
Google Scholar
[3]
A. T. Silvestri et al., Assessment of the Mechanical Properties of AlSi10Mg Parts Produced through Selective Laser Melting Under Different Conditions,, Procedia Manuf., vol. 47, p.1058–1064, Jan. 2020,.
DOI: 10.1016/j.promfg.2020.04.115
Google Scholar
[4]
A. Röttger et al., Microstructure and mechanical properties of 316L austenitic stainless steel processed by different SLM devices,, Int. J. Adv. Manuf. Technol. 2020 1083, vol. 108, no. 3, p.769–783, Jul. 2020,.
DOI: 10.1007/s00170-020-05371-1
Google Scholar
[5]
D. Vysochinskiy, N. Akhtar, T. Nordmo, M. R. Strand, A. Vyssios, and M. K. Bak, Experimental investigation of effect of printing direction and surface roughness on the mechanical properties of AlSi10Mg-alloy produced by selective laser melting,, Esaform 2021, no. April, p.8–14, 2021,.
DOI: 10.25518/esaform21.3627
Google Scholar
[6]
Z. Dong, X. Zhang, W. Shi, H. Zhou, H. Lei, and J. Liang, Study of Size Effect on Microstructure and Mechanical Properties of AlSi10Mg Samples Made by Selective Laser Melting,, Mater. 2018, Vol. 11, Page 2463, vol. 11, no. 12, p.2463, Dec. 2018,.
DOI: 10.3390/ma11122463
Google Scholar
[7]
N. Takata, H. Kodaira, A. Suzuki, and M. Kobashi, Size dependence of microstructure of AlSi10Mg alloy fabricated by selective laser melting,, Mater. Charact., vol. 143, p.18–26, Sep. 2018,.
DOI: 10.1016/j.matchar.2017.11.052
Google Scholar
[8]
N. T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N. M. Everitt, The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment,, Mater. Sci. Eng. A, vol. 667, p.139–146, Jun. 2016,.
DOI: 10.1016/j.msea.2016.04.092
Google Scholar
[9]
A. Bin Anwar and Q. C. Pham, Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength,, J. Mater. Process. Technol., vol. 240, p.388–396, Feb. (2017).
DOI: 10.1016/j.jmatprotec.2016.10.015
Google Scholar
[10]
B. J. Mfusi, N. R. Mathe, L. C. Tshabalala, and P. A. Popoola, The Effect of Stress Relief on the Mechanical and Fatigue Properties of Additively Manufactured AlSi10Mg Parts,, Met. 2019, Vol. 9, Page 1216, vol. 9, no. 11, p.1216, Nov. 2019,.
DOI: 10.3390/met9111216
Google Scholar
[11]
K. G. Prashanth, S. Scudino, and J. Eckert, Defining the tensile properties of Al-12Si parts produced by selective laser melting,, Acta Mater., vol. 126, p.25–35, Mar. 2017,.
DOI: 10.1016/j.actamat.2016.12.044
Google Scholar
[12]
C. H. S. Rakesh, N. Priyanka, R. Jayaganthan, and N. J. Vasa, Effect of build atmosphere on the mechanical properties of AlSi10Mg produced by selective laser melting,, Mater. Today Proc., vol. 5, no. 9, p.17231–17238, Jan. 2018,.
DOI: 10.1016/j.matpr.2018.04.133
Google Scholar
[13]
H. Rao, S. Giet, K. Yang, X. Wu, and C. H. J. Davies, The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting,, Mater. Des., vol. 109, p.334–346, Nov. 2016,.
DOI: 10.1016/j.matdes.2016.07.009
Google Scholar
[14]
R. Rashid et al., Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy,, Addit. Manuf., vol. 22, p.426–439, Aug. 2018,.
DOI: 10.1016/j.addma.2018.05.040
Google Scholar
[15]
I. Rosenthal, A. Stern, and N. Frage, Microstructure and Mechanical Properties of AlSi10Mg Parts Produced by the Laser Beam Additive Manufacturing (AM) Technology,, Metallogr. Microstruct. Anal., vol. 3, no. 6, p.448–453, Dec. 2014,.
DOI: 10.1007/s13632-014-0168-y
Google Scholar
[16]
I. Rosenthal, A. Stern, and N. Frage, Strain rate sensitivity and fracture mechanism of AlSi10Mg parts produced by Selective Laser Melting,, Mater. Sci. Eng. A, vol. 682, p.509–517, Jan. 2017,.
DOI: 10.1016/j.msea.2016.11.070
Google Scholar
[17]
S. Siddique, M. Awd, J. Tenkamp, and F. Walther, High and very high cycle fatigue failure mechanisms in selective laser melted aluminum alloys,, J. Mater. Res., vol. 32, no. 23, p.4296–4304, Dec. 2017,.
DOI: 10.1557/jmr.2017.314
Google Scholar
[18]
S. Siddique, M. Imran, E. Wycisk, C. Emmelmann, and F. Walther, Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting,, J. Mater. Process. Technol., vol. 221, p.205–213, Jul. 2015,.
DOI: 10.1016/j.jmatprotec.2015.02.023
Google Scholar
[19]
M. Tang, P. C. Pistorius, S. Narra, and J. L. Beuth, Rapid Solidification: Selective Laser Melting of AlSi10Mg,, Springer,.
DOI: 10.1007/s11837-015-1763-3
Google Scholar
[20]
A. Aversa et al., Effect of Process and Post-Process Conditions on the Mechanical Properties of an A357 Alloy Produced via Laser Powder Bed Fusion,, Met. 2017, Vol. 7, Page 68, vol. 7, no. 2, p.68, Feb. 2017,.
DOI: 10.3390/met7020068
Google Scholar
[21]
U. Tradowsky, J. White, R. M. Ward, N. Read, W. Reimers, and M. M. Attallah, Selective laser melting of AlSi10Mg: Influence of post-processing on the microstructural and tensile properties development,, Mater. Des., vol. 105, p.212–222, Sep. 2016,.
DOI: 10.1016/j.matdes.2016.05.066
Google Scholar
[22]
N. E. Uzan, R. Shneck, O. Yeheskel, and N. Frage, Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM),, 2017,.
DOI: 10.1016/j.msea.2017.08.027
Google Scholar
[23]
M. Awd, F. Stern, A. Kampmann, D. Kotzem, J. Tenkamp, and F. Walther, Microstructural Characterization of the Anisotropy and Cyclic Deformation Behavior of Selective Laser Melted AlSi10Mg Structures,, Met. 2018, Vol. 8, Page 825, vol. 8, no. 10, p.825, Oct. 2018,.
DOI: 10.3390/met8100825
Google Scholar
[24]
R. Casati, M. H. Nasab, M. Coduri, V. Tirelli, and M. Vedani, Effects of Platform Pre-Heating and Thermal-Treatment Strategies on Properties of AlSi10Mg Alloy Processed by Selective Laser Melting,, Met. 2018, Vol. 8, Page 954, vol. 8, no. 11, p.954, Nov. 2018,.
DOI: 10.3390/met8110954
Google Scholar
[25]
L. Denti, Additive Manufactured A357.0 Samples Using the Laser Powder Bed Fusion Technique: Shear and Tensile Performance,, Met. 2018, Vol. 8, Page 670, vol. 8, no. 9, p.670, Aug. 2018,.
DOI: 10.3390/met8090670
Google Scholar
[26]
T. Kimura and T. Nakamoto, Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting,, Mater. Des., vol. 89, p.1294–1301, Jan. 2016,.
DOI: 10.1016/j.matdes.2015.10.065
Google Scholar
[27]
A. H. Maamoun, Y. F. Xue, M. A. Elbestawi, and S. C. Veldhuis, The Effect of Selective Laser Melting Process Parameters on the Microstructure and Mechanical Properties of Al6061 and AlSi10Mg Alloys,, Mater. 2019, Vol. 12, Page 12, vol. 12, no. 1, p.12, Dec. 2018,.
DOI: 10.3390/ma12010012
Google Scholar
[28]
T. Maconachie et al., Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg,, vol. 788, p.139445, Jun. 2020, Accessed: Nov. 24, 2020. [Online]. Available: https://doi.org/10.1016/j.msea.2020.139445.
DOI: 10.1016/j.msea.2020.139445
Google Scholar
[29]
I. Maskery et al., Fatigue Performance Enhancement of Selectively Laser Melted Aluminium Alloy by Heat Treatment,, Aug. (2015).
Google Scholar
[30]
L. Y. Jiang et al., Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting,, Mater. Sci. Eng. A, vol. 734, p.171–177, Sep. 2018,.
DOI: 10.1016/j.msea.2018.07.092
Google Scholar
[31]
D.-K. Kim, J.-H. Hwang, E.-Y. Kim, Y.-U. Heo, W. Woo, and S.-H. Choi, Evaluation of the stress-strain relationship of constituent phases in AlSi10Mg alloy produced by selective laser melting using crystal plasticity FEM,, J. Alloys Compd., vol. 714, p.687–697, 2017,.
DOI: 10.1016/j.jallcom.2017.04.264
Google Scholar
[32]
A. Majeed, M. Muzamil, J. Lv, B. Liu, and F. Ahmad, Heat treatment influences densification and porosity of AlSi10Mg alloy thin-walled parts manufactured by selective laser melting technique,, J. Brazilian Soc. Mech. Sci. Eng. 2019 416, vol. 41, no. 6, p.1–13, May 2019,.
DOI: 10.1007/s40430-019-1769-9
Google Scholar
[33]
P. Y. Sun, Z. K. Zhu, C. Y. Su, L. Lu, C. Y. Zhou, and X. H. He, Experimental characterisation of mechanical behaviour for a TA2 welded joint using digital image correlation,, Opt. Lasers Eng., vol. 115, no. August 2018, p.161–171, 2019,.
DOI: 10.1016/j.optlaseng.2018.11.022
Google Scholar
[34]
N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, and M. Kobashi, Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments,, Mater. Sci. Eng. A, vol. 704, p.218–228, Sep. 2017,.
DOI: 10.1016/j.msea.2017.08.029
Google Scholar
[35]
W. Li et al., Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism,, Mater. Sci. Eng. A, vol. 663, p.116–125, Apr. 2016,.
DOI: 10.1016/j.msea.2016.03.088
Google Scholar
[36]
T. Fiegl, M. Franke, and C. Körner, Impact of build envelope on the properties of additive manufactured parts from AlSi10Mg,, Opt. Laser Technol., vol. 111, p.51–57, Apr. 2019,.
DOI: 10.1016/j.optlastec.2018.08.050
Google Scholar
[37]
X. P. Li et al., A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility,, Acta Mater., vol. 95, p.74–82, Aug. 2015,.
DOI: 10.1016/j.actamat.2015.05.017
Google Scholar
[38]
J. Suryawanshi, K. G. Prashanth, S. Scudino, J. Eckert, O. Prakash, and U. Ramamurty, Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting,, Acta Mater., vol. 115, p.285–294, Aug. 2016,.
DOI: 10.1016/j.actamat.2016.06.009
Google Scholar
[39]
M. Costas, D. Morin, M. de Lucio, and M. Langseth, Testing and simulation of additively manufactured AlSi10Mg components under quasi-static loading,, Eur. J. Mech. A/Solids, vol. 81, p.103966, May 2020,.
DOI: 10.1016/j.euromechsol.2020.103966
Google Scholar
[40]
R. Subbiah, J. Bensingh, A. Kader, and S. Nayak, Influence of printing parameters on structures, mechanical properties and surface characterization of aluminium alloy manufactured using selective laser melting,, Int. J. Adv. Manuf. Technol., vol. 106, no. 11–12, p.5137–5147, Feb. 2020,.
DOI: 10.1007/s00170-020-04929-3
Google Scholar
[41]
M. Fousová, D. Dvorský, A. Michalcová, and D. Vojtěch, Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures,, Mater. Charact., vol. 137, p.119–126, Mar. 2018,.
DOI: 10.1016/j.matchar.2018.01.028
Google Scholar
[42]
A. Iturrioz, E. Gil, M. M. Petite, F. Garciandia, A. M. Mancisidor, and M. San Sebastian, Selective laser melting of AlSi10Mg alloy: influence of heat treatment condition on mechanical properties and microstructure,, Weld. World 2018 624, vol. 62, no. 4, p.885–892, Apr. 2018,.
DOI: 10.1007/s40194-018-0592-8
Google Scholar
[43]
A. Pola et al., Evaluation on the fatigue behavior of sand-blasted AlSi10Mg obtained by DMLS,, Frat. ed Integrità Strutt., vol. 13, no. 49, p.775–790, Jun. 2019,.
DOI: 10.3221/igf-esis.49.69
Google Scholar
[44]
C. M. Laursen, S. A. DeJong, S. M. Dickens, A. N. Exil, D. F. Susan, and J. D. Carroll, Relationship between ductility and the porosity of additively manufactured AlSi10Mg,, Mater. Sci. Eng. A, vol. 795, p.139922, Sep. 2020,.
DOI: 10.1016/j.msea.2020.139922
Google Scholar
[45]
T. Nordmo, M. R. Strand, and A. Vyssios, Mekaniske egenskaper til selektiv lasersmeltet AlSi10Mg-legering,, University of Agder, 2020. Accessed: Nov. 24, 2020. [Online]. Available: https://uia.brage.unit.no/uia-xmlui/handle/11250/2679275.
Google Scholar
[46]
AlSiMg Aluminum Alloy Spherical Powder | Tekna., http://www.tekna.com/spherical-powders/alsimg_aluminum_alloy (accessed Nov. 27, 2020).
Google Scholar
[47]
Metalliske materialer : strekkprøving = Metallic materials : tensile testing : part 1 : Method of test at room temperature (ISO 6892-1:2016) : Del 1 : meode for prøving ved romtemperatur (ISO 6892-1:2016), vol. NS-EN ISO. Lysaker: Standard Norge, (2016).
DOI: 10.1201/9781482271362-188
Google Scholar
[48]
N. T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting,, Prog. Mater. Sci., vol. 106, p.100578, Dec. 2019,.
DOI: 10.1016/j.pmatsci.2019.100578
Google Scholar
[49]
B. C. Salzbrenner et al., High-throughput stochastic tensile performance of additively manufactured stainless steel,, J. Mater. Process. Technol., vol. 241, p.1–12, Mar. 2017,.
Google Scholar