[1]
Scherillo F, Manco E, Hassanin A El, et al (2020) Chemical surface finishing of electron beam melted Ti6Al4V using HF-HNO3 solutions. J Manuf Process 60:400–409. https://doi.org/10.1016/j.jmapro.2020.10.033.
DOI: 10.1016/j.jmapro.2020.10.033
Google Scholar
[2]
Scherillo F (2019) Chemical surface finishing of AlSi10Mg components made by additive manufacturing. Manuf Lett 19:5–9. https://doi.org/10.1016/j.mfglet.2018.12.002.
DOI: 10.1016/j.mfglet.2018.12.002
Google Scholar
[3]
Fatemi A, Molaei R, Simsiriwong J, et al (2019) Fatigue behaviour of additive manufactured materials: An overview of some recent experimental studies on Ti-6Al-4V considering various processing and loading direction effects. Fatigue Fract Eng Mater Struct 42:991–1009. https://doi.org/10.1111/ffe.13000.
DOI: 10.1111/ffe.13000
Google Scholar
[4]
Suo H, Chen Z, Liu J, et al (2014) Microstructure and Mechanical Properties of Ti-6Al-4V by Electron Beam Rapid Manufacturing. Rare Met Mater Eng 43:780–785. https://doi.org/https://doi.org/10.1016/S1875-5372(14)60083-7.
DOI: 10.1016/s1875-5372(14)60083-7
Google Scholar
[5]
Edwards P, Ramulu M (2014) Fatigue performance evaluation of selective laser melted Ti-6Al-4V. Mater Sci Eng A 598:327–337. https://doi.org/10.1016/j.msea.2014.01.041.
DOI: 10.1016/j.msea.2014.01.041
Google Scholar
[6]
Ali S, Hamza Tahir M, Asad Saeed M, et al (2019) Design and Development of Fatigue Machine: Rotating Bending Fatigue Testing on different Materials. Int J Adv Eng Manag 4:8–15. https://doi.org/10.13140/RG.2.2.32181.32484.
Google Scholar
[7]
Hassan T, Liu Z (2001) On the difference of fatigue strengths from rotating bending, four-point bending, and cantilever bending tests. Int J Press Vessel Pip 78:19–30. https://doi.org/10.1016/S0308-0161(00)00080-6.
DOI: 10.1016/s0308-0161(00)00080-6
Google Scholar
[8]
Chern AH, Nandwana P, Yuan T, et al (2019) A review on the fatigue behavior of Ti-6Al-4V fabricated by electron beam melting additive manufacturing. Int J Fatigue 119:173–184. https://doi.org/10.1016/j.ijfatigue.2018.09.022.
DOI: 10.1016/j.ijfatigue.2018.09.022
Google Scholar
[9]
Uriati F, Nicoletto G, Lutey AHA (2021) As-built surface quality and fatigue resistance of Inconel 718 obtained by additive manufacturing. Mater Des Process Commun 3:1–7. https://doi.org/10.1002/mdp2.228.
DOI: 10.1002/mdp2.228
Google Scholar
[10]
Eric W, Claus E, Shafaqat S, Frank W (2013) High cycle fatigue (HCF) performance of Ti-6Al-4V alloy processed by selective laser melting. Adv Mater Res 816–817:134–139. https://doi.org/10.4028/www.scientific.net/AMR.816-817.134.
DOI: 10.4028/www.scientific.net/amr.816-817.134
Google Scholar
[11]
Uhlmann E, Fleck C, Gerlitzky G, Faltin F (2017) Dynamical Fatigue Behavior of Additive Manufactured Products for a Fundamental Life cycle Approach. Procedia CIRP 61:588–593. https://doi.org/10.1016/j.procir.2016.11.138.
DOI: 10.1016/j.procir.2016.11.138
Google Scholar
[12]
Nascimento MP, Souza RC, Pigatin WL, Voorwald HJC (2001) Effects of surface treatments on the fatigue strength of AISI 4340 aeronautical steel. Int J Fatigue 23:607–618. https://doi.org/10.1016/S0142-1123(01)00015-9.
DOI: 10.1016/s0142-1123(01)00015-9
Google Scholar
[13]
Mower TM, Long MJ (2016) Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng A 651:198–213. https://doi.org/10.1016/j.msea.2015.10.068.
DOI: 10.1016/j.msea.2015.10.068
Google Scholar
[14]
Kobryn PA, Semiatin SL (2001) Mechanical Properties of Laser-Deposited Ti-6Al-4V P.A. Kobryn and S.L. Semiatin Air Force Research Laboratory, AFRL/MLLMP, Wright-Patterson Air Force Base, OH 45433-7817. Int Solid Free Fabr Symp 179–186.
DOI: 10.1007/s11837-001-0068-x
Google Scholar