Cold Sprayed Metallic Coatings on Fibre-Reinforced Composites: A Machine Learning Approach for the Optimization of the Process

Article Preview

Abstract:

Cold spray additive manufacturing (CSAM) is a promising process for producing metallic layers on different substrates, using powders as a feedstock material. The metallic powders are deposited through pressured gas that reaches supersonic velocities. Due to the low heat input required, as the powders remain in solid-state, this technology is particularly suitable to coat thermo-sensitive materials such as composites. Moreover, the absence of melting allows design freedom, allowing to build complex structures on the substrates, layer by layer. In this scenario, machine learning techniques can be crucial to improve the quality and understanding of this manufacturing process. The aim of this work is to predict the deformation and penetration of a particle upon impact using machine learning techniques in order to assess the properties of the coating. A univariate linear regression method was chosen to verify the feasibility of Theory Guided Machine Learning (TGML) techniques to predict the characteristics of the coating. The training dataset was obtained from both experimental data and computational data. It was confirmed that TGML could be a good route to pursue in order to optimize this process.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] L.-Y. Zhou, J. Fu, Y. He, A Review of 3D Printing Technologies for Soft Polymer Materials, Advanced Functional Materials. 30 (2020) 2000187. https://doi.org/https://doi.org/10.1002/adfm.202000187.

DOI: 10.1002/adfm.202000187

Google Scholar

[2] W.W. Wright, Polymers in aerospace applications, Materials & Design. 12 (1991) 222–227. https://doi.org/10.1016/0261-3069(91)90169-5.

DOI: 10.1016/0261-3069(91)90169-5

Google Scholar

[3] I.Y. Chang, J.K. Lees, Recent Development in Thermoplastic Composites: A Review of Matrix Systems and Processing Methods, Journal of Thermoplastic Composite Materials. 1 (1988) 277–296. https://doi.org/10.1177/089270578800100305.

DOI: 10.1177/089270578800100305

Google Scholar

[4] U.K. Vaidya, K.K. Chawla, Processing of fibre reinforced thermoplastic composites, International Materials Reviews. 53 (2008) 185–218. https://doi.org/10.1179/174328008 X325223.

DOI: 10.1179/174328008x325223

Google Scholar

[5] F. el Halabi, J.F. Rodriguez, L. Rebolledo, E. Hurtós, M. Doblaré, Mechanical characterization and numerical simulation of polyether–ether–ketone (PEEK) cranial implants, Journal of the Mechanical Behavior of Biomedical Materials. 4 (2011) 1819–1832. https://doi.org/10.1016/J.JMBBM.2011.05.039.

DOI: 10.1016/j.jmbbm.2011.05.039

Google Scholar

[6] Y. Zhao, K. Zhao, Y. Li, F. Chen, Mechanical characterization of biocompatible PEEK by FDM, Journal of Manufacturing Processes. 56 (2020) 28–42. https://doi.org/10.1016/J.JMAPRO.2020.04.063.

DOI: 10.1016/j.jmapro.2020.04.063

Google Scholar

[7] A.S. Perna, A. Astarita, P. Carlone, X. Guthmann, A. Viscusi, Characterization of cold-spray coatings on fiber-reinforced polymers through nanoindentation tests, Metals. 11 (2021). https://doi.org/10.3390/met11020331.

DOI: 10.3390/met11020331

Google Scholar

[8] H. Parmar, F. Tucci, P. Carlone, T.S. Sudarshan, Metallisation of polymers and polymer matrix composites by cold spray: state of the art and research perspectives, (2021). https://doi.org/10.1080/09506608.2021.1954805.

DOI: 10.1080/09506608.2021.1954805

Google Scholar

[9] H. Che, P. Vo, S. Yue, Investigation of Cold Spray on Polymers by Single Particle Impact Experiments, Journal of Thermal Spray Technology. 28 (2019) 135–143. https://doi.org/10.1007/s11666-018-0801-4.

DOI: 10.1007/s11666-018-0801-4

Google Scholar

[10] X.-J. Ning, Q.-S. Wang, Z. Ma, H.-J. Kim, Numerical Study of In-flight Particle Parameters in Low-Pressure Cold Spray Process, Journal of Thermal Spray Technology. 19 (2010) 1211–1217. https://doi.org/10.1007/s11666-010-9548-2.

DOI: 10.1007/s11666-010-9548-2

Google Scholar

[11] X.-J. Ning, Q.-S. Wang, Z. Ma, H.-J. Kim, Numerical Study of In-flight Particle Parameters in Low-Pressure Cold Spray Process, Journal of Thermal Spray Technology. 19 (2010) 1211–1217. https://doi.org/10.1007/s11666-010-9548-2.

DOI: 10.1007/s11666-010-9548-2

Google Scholar

[12] R. Ghelichi, S. Bagherifard, M. Guagliano, M. Verani, Numerical simulation of cold spray coating, Surface and Coatings Technology. 205 (2011) 5294–5301. https://doi.org/10.1016/J.SURFCOAT.2011.05.038.

DOI: 10.1016/j.surfcoat.2011.05.038

Google Scholar

[13] A. Heydari Astaraee, C. Colombo, S. Bagherifard, Numerical Modeling of Bond Formation in Polymer Surface Metallization Using Cold Spray, Journal of Thermal Spray Technology. 30 (2021) 1765–1776. https://doi.org/10.1007/s11666-021-01224-9.

DOI: 10.1007/s11666-021-01224-9

Google Scholar

[14] A.S. Alhulaifi, G.A. Buck, W.J. Arbegast, Numerical and Experimental Investigation of Cold Spray Gas Dynamic Effects for Polymer Coating, Journal of Thermal Spray Technology. 21 (2012) 852–862. https://doi.org/10.1007/s11666-012-9743-4.

DOI: 10.1007/s11666-012-9743-4

Google Scholar

[15] J.-T. Tsai, S. Akin, F. Zhou, D.F. Bahr, M.B.-G. Jun, Establishing a Cold Spray Particle Deposition Window on Polymer Substrate, Journal of Thermal Spray Technology. 30 (2021) 1069–1080. https://doi.org/10.1007/s11666-021-01179-x.

DOI: 10.1007/s11666-021-01179-x

Google Scholar

[16] M.I. Jordan, T.M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science. (2015). https://doi.org/10.1126/science.aaa8415.

Google Scholar

[17] N. Wagner, J.M. Rondinelli, Theory-Guided Machine Learning in Materials Science, Frontiers in Materials. 3 (2016) 28. https://doi.org/10.3389/fmats.2016.00028.

Google Scholar

[18] R.N. Raoelison, L. Lalu Koithara, S. Costil, Cold spray coating of PEEK surface by copper deposition: Interfacial adhesion at high deposition efficiency and bonding strength, CIRP Journal of Manufacturing Science and Technology. (2021). https://doi.org/10.1016/j.cirpj. 2021.05.008.

DOI: 10.1016/j.cirpj.2021.05.008

Google Scholar

[19] C. Chen, X. Xie, Y. Xie, X. Yan, C. Huang, Save PDF Previous PDF in this issue Next PDF in this issue Surface & Coatings Technology Metallization of polyether ether ketone ( PEEK ) by copper coating via cold spray, (2019) (2019).

DOI: 10.1016/j.surfcoat.2018.02.087

Google Scholar

[20] R. della Gatta, A. Viscusi, A.S. Perna, A. Caraviello, A. Astarita, Cold spray process for the production of AlSi10Mg coatings on glass fibers reinforced polymers, Materials and Manufacturing Processes. 36 (2021). https://doi.org/10.1080/10426914.2020.1813895.

DOI: 10.1080/10426914.2020.1813895

Google Scholar

[21] M. Hassani-Gangaraj, D. Veysset, K.A. Nelson, C.A. Schuh, In-situ observations of single micro-particle impact bonding, Scripta Materialia. 145 (2018) 9–13. https://doi.org/10.1016/j.scriptamat.2017.09.042.

DOI: 10.1016/j.scriptamat.2017.09.042

Google Scholar

[22] C. Chen, X. Xie, Y. Xie, X. Yan, C. Huang, S. Deng, Z. Ren, H. Liao, Metallization of polyether ether ketone (PEEK) by copper coating via cold spray, Surface and Coatings Technology. 342 (2018) 209–219. https://doi.org/10.1016/J.SURFCOAT.2018.02.087.

DOI: 10.1016/j.surfcoat.2018.02.087

Google Scholar

[23] P.C. King, G. Bae, S.H. Zahiri, M. Jahedi, C. Lee, An Experimental and Finite Element Study of Cold Spray Copper Impact onto Two Aluminum Substrates, J. Therm. Spray Technol. 19 (2010) 620–634. https://doi.org/10.1007/s11666-009-9454-7.

DOI: 10.1007/s11666-009-9454-7

Google Scholar

[24] G. Bae, S. Kumar, S. Yoon, K. Kang, H. Na, H.-J. Kim, C. Lee, Bonding features and associated mechanisms in kinetic sprayed titanium coatings, Acta Materialia. 57 (2009) 5654–5666. https://doi.org/https://doi.org/10.1016/j.actamat.2009.07.061.

DOI: 10.1016/j.actamat.2009.07.061

Google Scholar

[25] S. Yin, X. Wang, X. Suo, H. Liao, Z. Guo, W. Li, C. Coddet, Deposition behavior of thermally softened copper particles in cold spraying, Acta Materialia. 61 (2013) 5105–5118. https://doi.org/https://doi.org/10.1016/j.actamat.2013.04.041.

DOI: 10.1016/j.actamat.2013.04.041

Google Scholar

[26] G. Bae, Y. Xiong, S. Kumar, K. Kang, C. Lee, General aspects of interface bonding in kinetic sprayed coatings, Acta Materialia. 56 (2008) 4858–4868. https://doi.org/https://doi.org/10.1016/j.actamat.2008.06.003.

DOI: 10.1016/j.actamat.2008.06.003

Google Scholar

[27] F.F. Lubis, Y. Rosmansyah, S.H. Supangkat, Gradient descent and normal equations on cost function minimization for online predictive using linear regression with multiple variables, in: 2014 International Conference on ICT For Smart Society (ICISS), 2014: p.202–205. https://doi.org/10.1109/ICTSS.2014.7013173.

DOI: 10.1109/ictss.2014.7013173

Google Scholar

[28] S. Ruder, An overview of gradient descent optimization algorithms *, (n.d.). http://caffe.berkeleyvision.org/tutorial/solver.html (accessed November 29, 2021).

Google Scholar

[29] T. Chai, R.R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature, Geoscientific Model Development. 7 (2014) 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014.

DOI: 10.5194/gmd-7-1247-2014

Google Scholar