[1]
G. Erboz, How to Define Industry 40: The Main Pillars of Industry 4.0, Manag. Trends Dev. Enterp. Glob. Era. (2017) 761–767.
Google Scholar
[2]
G. de Alteriis, D. Accardo, C. Conte, R.S. Lo Moriello, Performance enhancement of consumer-grade mems sensors through geometrical redundancy, Sensors. (2021). https://doi.org/10.3390/s21144851.
DOI: 10.3390/s21144851
Google Scholar
[3]
C. Conte, G. de Alteriis, R.S. Lo Moriello, D. Accardo, G. Rufino, Drone trajectory segmentation for real-time and adaptive time-of-flight prediction, Drones. (2021). https://doi.org/10.3390/drones5030062.
DOI: 10.3390/drones5030062
Google Scholar
[4]
R.M.F. Paulo, F. Rubino, R.A.F. Valente, F. Teixeira-Dias, P. Carlone, Modelling of friction stir welding and its influence on the structural behaviour of aluminium stiffened panels, Thin-Walled Struct. 157 (2020) 107128. https://doi.org/10.1016/j.tws.2020.107128.
DOI: 10.1016/j.tws.2020.107128
Google Scholar
[5]
M. Dwivedi, A.T. Silvestri, S. Franchitti, H. Krishnaswamy, A. Narayanaperumal, A. Astarita, Friction welding: An effective joining process for hybrid additive manufacturing, CIRP J. Manuf. Sci. Technol. (2021). https://doi.org/10.1016/j.cirpj.2021.07.016.
DOI: 10.1016/j.cirpj.2021.07.016
Google Scholar
[6]
F. Tucci, R. Bezerra, F. Rubino, P. Carlone, Multiphase flow simulation in injection pultrusion with variable properties, Mater. Manuf. Process. (2020). https://doi.org/10.1080/10426914.2020.1711928.
DOI: 10.1080/10426914.2020.1711928
Google Scholar
[7]
H. Parmar, T. Khan, F. Tucci, R. Umer, P. Carlone, Advanced robotics and additive manufacturing of composites: towards a new era in Industry 4.0, Mater. Manuf. Process. (2021) 1–35. https://doi.org/10.1080/10426914.2020.1866195.
DOI: 10.1080/10426914.2020.1866195
Google Scholar
[8]
R.S. Lo Moriello, A. Tocchi, A. Liccardo, F. Bonavolonta, G. De Alteriis, Exploiting IoT-Oriented Technologies for Measurement Networks of Environmental Radiation, IEEE Instrum. Meas. Mag. (2020). https://doi.org/10.1109/MIM.2020.9289067.
DOI: 10.1109/mim.2020.9289067
Google Scholar
[9]
S. Vaidya, P. Ambad, S. Bhosle, Industry 4.0 - A Glimpse, in: Procedia Manuf., 2018. https://doi.org/10.1016/j.promfg.2018.02.034.
Google Scholar
[10]
I. Gibson, D. Rosen, B. Stucker, Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, second edition, 2015. https://doi.org/10.1007/978-1-4939-2113-3.
DOI: 10.1007/978-1-4939-2113-3
Google Scholar
[11]
I. Papa, A.T. Silvestri, M.R. Ricciardi, V. Lopresto, A. Squillace, Effect of Fibre Orientation on Novel Continuous 3D-Printed Fibre-Reinforced Composites, Polymers (Basel). 13 (2021). https://doi.org/10.3390/polym13152524.
DOI: 10.3390/polym13152524
Google Scholar
[12]
A.T. Silvestri, I. Papa, F. Rubino, A. Squillace, On the critical technological issues of CFF: enhancing the bearing strength, Mater. Manuf. Process. (2021). https://doi.org/10.1080/10426914.2021.1954195.
DOI: 10.1080/10426914.2021.1954195
Google Scholar
[13]
M. Troiano, A.T. Silvestri, F. Scherillo, A. El Hassanin, R. Solimene, A. Squillace, P. Salatino, An experimental characterization of powder/substrate interaction during direct metal deposition for additive manufacturing, in: Key Eng. Mater., 2019. https://doi.org/10.4028/www.scientific.net/KEM.813.435.
DOI: 10.4028/www.scientific.net/kem.813.435
Google Scholar
[14]
A.T. Silvestri, A. Astarita, A. El Hassanin, A. Manzo, U. Iannuzzo, G. Iannuzzo, V. de Rosa, F. Acerra, A. Squillace, Assessment of the mechanical properties of AlSi10Mg parts produced through selective laser melting under different conditions, Procedia Manuf. 47 (2020) 1058–1064. https://doi.org/10.1016/j.promfg.2020.04.115.
DOI: 10.1016/j.promfg.2020.04.115
Google Scholar
[15]
A. El Hassanin, F. Scherillo, A.T. Silvestri, A. Caraviello, R. Sansone, A. Astarita, A. Squillace, Heat treatment of inconel selective laser melted parts: Microstructure evolution, in: AIP Conf. Proc., 2019. https://doi.org/10.1063/1.5112599.
DOI: 10.1063/1.5112599
Google Scholar
[16]
A.T. Silvestri, S. Amirabdollahian, M. Perini, P. Bosetti, A. Squillace, Direct Laser Deposition for Tailored Structure, ESAFORM 2021. (2021). https://doi.org/10.25518/esaform21.4124.
DOI: 10.25518/esaform21.4124
Google Scholar
[17]
S. Amirabdollahian, F. Deirmina, M. Pellizzari, P. Bosetti, A. Molinari, Tempering behavior of a direct laser deposited hot work tool steel: Influence of quenching on secondary hardening and microstructure, Mater. Sci. Eng. A. 814 (2021) 141126. https://doi.org/10.1016/j.msea. 2021.141126.
DOI: 10.1016/j.msea.2021.141126
Google Scholar
[18]
T. Materials, ASM Handbook, Volume 9, Metallography and Microstructures, (2004).
Google Scholar
[19]
ASTM E92-82(2003), Standard Test Method for Vickers Hardness of Metallic Materials, (2008).
Google Scholar
[20]
R. Cottam, J. Wang, V. Luzin, Characterization of microstructure and residual stress in a 3D H13 tool steel component produced by additive manufacturing, J. Mater. Res. 29 (2014) 1978–1986. https://doi.org/10.1557/jmr.2014.190.
DOI: 10.1557/jmr.2014.190
Google Scholar
[21]
S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics, Addit. Manuf. 8 (2015) 36–62. https://doi.org/10.1016/j.addma.2015.07.001.
DOI: 10.1016/j.addma.2015.07.001
Google Scholar
[22]
N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Addit. Manuf. 8 (2015) 12–35. https://doi.org/10.1016/j.addma.2015.07.002.
DOI: 10.1016/j.addma.2015.07.002
Google Scholar