Exploring Potentialities of Direct Laser Deposition: Thin-Walled Structures

Article Preview

Abstract:

In the context of Industry 4.0, the interest towards the additive manufacturing processes is growing due to their numerous advantages, such as the possibility to prototype, the reduction of waste material, the inferior time to market, ad so on. In particular, a promising technology is the Direct Laser Deposition, which uses a focused laser beam to melt powders as there are deposited. In opposition to the well-established powder-bed fusion technologies, there are still some issues related to this process. This work aims to solve one of them, exploring the potentialities of DLD in printing thin-wall structures. For this purpose, the influence of the adopted deposition strategy and of the layer thickness on the geometrical accuracy and mechanical properties has been investigated. The results have pointed out that the first variable strongly influences the workpiece. It is possible to deposit thin-wall structures with a ZigZag strategy and consider a layer thickness equal to 90% of the height of the single track, printed with the same process parameters.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] G. Erboz, How to Define Industry 40: The Main Pillars of Industry 4.0, Manag. Trends Dev. Enterp. Glob. Era. (2017) 761–767.

Google Scholar

[2] G. de Alteriis, D. Accardo, C. Conte, R.S. Lo Moriello, Performance enhancement of consumer-grade mems sensors through geometrical redundancy, Sensors. (2021). https://doi.org/10.3390/s21144851.

DOI: 10.3390/s21144851

Google Scholar

[3] C. Conte, G. de Alteriis, R.S. Lo Moriello, D. Accardo, G. Rufino, Drone trajectory segmentation for real-time and adaptive time-of-flight prediction, Drones. (2021). https://doi.org/10.3390/drones5030062.

DOI: 10.3390/drones5030062

Google Scholar

[4] R.M.F. Paulo, F. Rubino, R.A.F. Valente, F. Teixeira-Dias, P. Carlone, Modelling of friction stir welding and its influence on the structural behaviour of aluminium stiffened panels, Thin-Walled Struct. 157 (2020) 107128. https://doi.org/10.1016/j.tws.2020.107128.

DOI: 10.1016/j.tws.2020.107128

Google Scholar

[5] M. Dwivedi, A.T. Silvestri, S. Franchitti, H. Krishnaswamy, A. Narayanaperumal, A. Astarita, Friction welding: An effective joining process for hybrid additive manufacturing, CIRP J. Manuf. Sci. Technol. (2021). https://doi.org/10.1016/j.cirpj.2021.07.016.

DOI: 10.1016/j.cirpj.2021.07.016

Google Scholar

[6] F. Tucci, R. Bezerra, F. Rubino, P. Carlone, Multiphase flow simulation in injection pultrusion with variable properties, Mater. Manuf. Process. (2020). https://doi.org/10.1080/10426914.2020.1711928.

DOI: 10.1080/10426914.2020.1711928

Google Scholar

[7] H. Parmar, T. Khan, F. Tucci, R. Umer, P. Carlone, Advanced robotics and additive manufacturing of composites: towards a new era in Industry 4.0, Mater. Manuf. Process. (2021) 1–35. https://doi.org/10.1080/10426914.2020.1866195.

DOI: 10.1080/10426914.2020.1866195

Google Scholar

[8] R.S. Lo Moriello, A. Tocchi, A. Liccardo, F. Bonavolonta, G. De Alteriis, Exploiting IoT-Oriented Technologies for Measurement Networks of Environmental Radiation, IEEE Instrum. Meas. Mag. (2020). https://doi.org/10.1109/MIM.2020.9289067.

DOI: 10.1109/mim.2020.9289067

Google Scholar

[9] S. Vaidya, P. Ambad, S. Bhosle, Industry 4.0 - A Glimpse, in: Procedia Manuf., 2018. https://doi.org/10.1016/j.promfg.2018.02.034.

Google Scholar

[10] I. Gibson, D. Rosen, B. Stucker, Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, second edition, 2015. https://doi.org/10.1007/978-1-4939-2113-3.

DOI: 10.1007/978-1-4939-2113-3

Google Scholar

[11] I. Papa, A.T. Silvestri, M.R. Ricciardi, V. Lopresto, A. Squillace, Effect of Fibre Orientation on Novel Continuous 3D-Printed Fibre-Reinforced Composites, Polymers (Basel). 13 (2021). https://doi.org/10.3390/polym13152524.

DOI: 10.3390/polym13152524

Google Scholar

[12] A.T. Silvestri, I. Papa, F. Rubino, A. Squillace, On the critical technological issues of CFF: enhancing the bearing strength, Mater. Manuf. Process. (2021). https://doi.org/10.1080/10426914.2021.1954195.

DOI: 10.1080/10426914.2021.1954195

Google Scholar

[13] M. Troiano, A.T. Silvestri, F. Scherillo, A. El Hassanin, R. Solimene, A. Squillace, P. Salatino, An experimental characterization of powder/substrate interaction during direct metal deposition for additive manufacturing, in: Key Eng. Mater., 2019. https://doi.org/10.4028/www.scientific.net/KEM.813.435.

DOI: 10.4028/www.scientific.net/kem.813.435

Google Scholar

[14] A.T. Silvestri, A. Astarita, A. El Hassanin, A. Manzo, U. Iannuzzo, G. Iannuzzo, V. de Rosa, F. Acerra, A. Squillace, Assessment of the mechanical properties of AlSi10Mg parts produced through selective laser melting under different conditions, Procedia Manuf. 47 (2020) 1058–1064. https://doi.org/10.1016/j.promfg.2020.04.115.

DOI: 10.1016/j.promfg.2020.04.115

Google Scholar

[15] A. El Hassanin, F. Scherillo, A.T. Silvestri, A. Caraviello, R. Sansone, A. Astarita, A. Squillace, Heat treatment of inconel selective laser melted parts: Microstructure evolution, in: AIP Conf. Proc., 2019. https://doi.org/10.1063/1.5112599.

DOI: 10.1063/1.5112599

Google Scholar

[16] A.T. Silvestri, S. Amirabdollahian, M. Perini, P. Bosetti, A. Squillace, Direct Laser Deposition for Tailored Structure, ESAFORM 2021. (2021). https://doi.org/10.25518/esaform21.4124.

DOI: 10.25518/esaform21.4124

Google Scholar

[17] S. Amirabdollahian, F. Deirmina, M. Pellizzari, P. Bosetti, A. Molinari, Tempering behavior of a direct laser deposited hot work tool steel: Influence of quenching on secondary hardening and microstructure, Mater. Sci. Eng. A. 814 (2021) 141126. https://doi.org/10.1016/j.msea. 2021.141126.

DOI: 10.1016/j.msea.2021.141126

Google Scholar

[18] T. Materials, ASM Handbook, Volume 9, Metallography and Microstructures, (2004).

Google Scholar

[19] ASTM E92-82(2003), Standard Test Method for Vickers Hardness of Metallic Materials, (2008).

Google Scholar

[20] R. Cottam, J. Wang, V. Luzin, Characterization of microstructure and residual stress in a 3D H13 tool steel component produced by additive manufacturing, J. Mater. Res. 29 (2014) 1978–1986. https://doi.org/10.1557/jmr.2014.190.

DOI: 10.1557/jmr.2014.190

Google Scholar

[21] S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics, Addit. Manuf. 8 (2015) 36–62. https://doi.org/10.1016/j.addma.2015.07.001.

DOI: 10.1016/j.addma.2015.07.001

Google Scholar

[22] N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Addit. Manuf. 8 (2015) 12–35. https://doi.org/10.1016/j.addma.2015.07.002.

DOI: 10.1016/j.addma.2015.07.002

Google Scholar