[1]
S. Dadbakhsh, M. Speirs, J. van Humbeeck, J.P. Kruth, Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: from processes to potential biomedical applications, MRS Bull. 41 (2016) 765–774.
DOI: 10.1557/mrs.2016.209
Google Scholar
[2]
C.M. Jackson, H.J. Wagner, R.J. Wasilewski, 55 Nitinol—The Alloy with a Memory: Its Physical Metallurgy, Properties, and Applications, NASA SP-5110, NASA: USA, (1972).
Google Scholar
[3]
M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Manufacturing and processing of NiTi implants: A review, Prog. Mater. Sci. 57 (2012) 911–946.
DOI: 10.1016/j.pmatsci.2011.11.001
Google Scholar
[4]
J.C. Chekotu, R. Groarke, K. O'Toole, D. Brabazon, Advances in selective laser melting of nitinol shape memory alloy part production, Mater. 12 (2019) 809.
DOI: 10.3390/ma12050809
Google Scholar
[5]
J. Liu, Compliant Mechanisms Using Superelastic Nitinol, M.S. Thesis, Pennsylvania State University, USA, (2012).
Google Scholar
[6]
F. Auricchio, R.L. Taylor, J. Lubliner, Shape memory alloys: Macromodelling and numerical simulations of the superelastic behavior, Comput. Meth. Appl. Mech. Eng. 146 (1997) 281-312.
DOI: 10.1016/s0045-7825(96)01232-7
Google Scholar
[7]
A. Skalitzky, P. Caleb, A. Gurley, D. Beale, Woven nitinol fabric strips characterized in tension via finite element analysis and geometric modelling, Proceedings of the ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Kentucky, USA, September 9–11, (2019).
DOI: 10.1115/smasis2019-5669
Google Scholar
[8]
S. Saedi, Shape Memory Behavior of Dense and Porous NiTi Alloys Fabricated by Selective Laser Melting, Ph.D. Thesis, University of Kentucky, USA, (2017).
Google Scholar
[9]
G. Florian, A.R. Gabor, C.A. Nicolae, A. Rotaru, N. Stanica, N.G. Bizdoaca, P. Rotaru, Thermomechanical, calorimetric and magnetic properties of a Ni-Ti shape-memory alloy wire, J. Therm. Anal. Calorim. 140 (2020) 527–544.
DOI: 10.1007/s10973-019-08869-3
Google Scholar
[10]
J.G. Fuentes, P. Gümpel, J. Strittmatter, Phase change behavior of nitinol shape memory alloys, Adv. Eng. Mater. 4 (2002) 437–452.
DOI: 10.1002/1527-2648(20020717)4:7<437::aid-adem437>3.0.co;2-8
Google Scholar
[11]
X. Jiang, B. Li, Finite element analysis of a superelastic shape memory alloy considering the effect of plasticity, J. Theor. Appl. Mech. 55 (2017) 1355-1368.
DOI: 10.15632/jtam-pl.55.4.1355
Google Scholar
[12]
P. Šittner, P. Sedlák, H. Seiner, P. Sedmák, J. Pilch, R. Delville, L. Heller, L. Kadeřávek, On the coupling between martensitic transformation and plasticity in NiTi: Experiments and continuum based modelling, Prog. Mater. Sci. 98 (2018) 249-298.
DOI: 10.1016/j.pmatsci.2018.07.003
Google Scholar
[13]
X. Wang, B. Xu, Z. Yue, Phase transformation behavior of pseudoelastic NiTi shape memory alloys under large strain, J. Alloys Comp. 463 (2008) 417-422.
DOI: 10.1016/j.jallcom.2007.09.029
Google Scholar
[14]
A. Kumar, Comprehensive Modeling of Shape Memory Alloys for Actuation of Large-Scale Structures, Ph.D. Thesis, University of Akron, USA, (2010).
Google Scholar
[15]
L. Petrini, A. Bertini, A three-dimensional phenomenological model describing cyclic behavior of shape memory alloys, Int. J. Plastic. 125 (2020) 348-373.
DOI: 10.1016/j.ijplas.2019.10.008
Google Scholar
[16]
T.W. Duerig, A.R. Pelton, K. Bhattacharya, The measurement and interpretation of transformation temperatures in Nitinol, Shap. Mem. Superelasticity, 3 (2017) 485–498.
DOI: 10.1007/s40830-017-0133-0
Google Scholar
[17]
P. Theriault, P. Terriault, V. Brailovski, R. Gallo, Finite element modeling of a progressively expanding shape memory stent, J. Biomech. 39 (2006) 2837-2844.
DOI: 10.1016/j.jbiomech.2005.09.018
Google Scholar