Extrusion of Lightweight Aluminum and Magnesium Alloys Structures for Aviation Applications

Article Preview

Abstract:

The development of light-weight materials and fabricating parts/sub-assemblies of substantially large dimensions has become a major issue for the aerospace industry, which has boosted the development of more advanced materials with high specification properties. Recent aluminum and magnesium alloys developments are based on achieving superior fatigue crack growth resistance, better corrosion resistance, lower density, etc. Standard manufacturing techniques, such as extrusion, ought to be developed in order to find a beneficial solution allowing for structural weight reduction, which is a very efficient means of improving aircraft performance. It is associated with the problem of extrusion profiles with a complex cross-section shape. In this work the formability of aluminum and magnesium alloys in the extrusion process was determined by the upsetting test through specification of the flow stress in relationship to the deformation size and rate. The results of the upsetting test of Al (7075, 2024, 8090, 2099) and Mg ( AZ31, AZ61, AZ80, WE 43) alloys were used in determining the conditions of the extrusion of profiles of various cross section shape and extrusion ratio. The analysis of macro and microstructure of extruded products and their mechanical properties demonstrates strong influence of the shape of extrudate cross section on metal exit speed and extrusion force value. Macro-and microstructure of all the investigated alloys after extrusion are highly homogeneous in terms of the grain size and morphology of the phase components, compared to the macro- and microstructure in the initial state, which justifies the use of them in production of aviation profiles.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] K. Saha Pradip, Aerospace Manufacturing Processes, CRC Press (2017).

Google Scholar

[2] K. Muller at all, Fundamentals of Extrusion Technology,, Giesel Verlag GmbH, (2004).

Google Scholar

[3] W. Libura: Metal flow in extrusion, Metallurgy on the turn of the 20th century, Kraków, 2002, 391-412.

Google Scholar

[4] J. Piwnik, Mechanika procesów wyciskania metali, Rozprawy naukowe nr 6, Politechnika Białostocka (1991).

Google Scholar

[5] J. Piwnik, Teoria i eksperyment w analizie procesów wyciskania, Oficyna Wydawnicza Politechniki Białostockiej (2010).

Google Scholar

[6] Y .Yang, B. Li, Z. Zhang,. Analysis on flow stress of magnesium alloys during high temperature deformation. Trans. Nonferrous Met. Soc. China18, 2008, 180 - 184.

Google Scholar

[7] B. Pawłowska, R.E. Śliwa, Archives of Metallurgy and Materials, v.60, 4, ( 2015 ), 2805 - (2011).

Google Scholar

[8] Boeing 747-400. Fuselage Panel. 2007. Available online: https://www.verkehrsrundschau.de/nachrichten/ups-erhaelt-erste-boeing-747-400-560172. html (accessed on 18 February 2021).

Google Scholar

[9] D. Leśniak, M. Dziki, J. Zasadziński, W. Libura, Influence of Mg content on deformability of AlMg alloys during extrusion, Archives of Metallurgy and Materials, vol. 61, iss. 1, 2016, 86-92.

DOI: 10.1515/amm-2016-0010

Google Scholar

[10] W. Johnson, H.K. Kudo, The Mechanics of Metal Extrusion, (1962).

Google Scholar

[11] K. Laue , H. Stenge,. Extrusion – Process, Machinery, Tooling, ASM Internationla, Metals Park, Ohio (1981).

Google Scholar

[12] J. Chodorowski, A. Ciszewski, T. Radomski: Materiałoznawstwo lotnicze, Oficyna Wydawnicza PW, Warszawa (2003).

Google Scholar

[13] M. Hatherly, Deformation at high strains, Strength of Metals and Alloys, Proceedings of the 6th International Conference, ICSMA 6, R.C. Gifkins (ed), Pergamon Press, Oxford, 1983, 1181-1195.

DOI: 10.1016/b978-1-4832-8423-1.50173-5

Google Scholar

[14] B. Pawłowska, R.E. Śliwa, Analiza plastycznego płynięcia materiału w procesie wyciskania płaskowników, Rudy i Metale Nieżelazne, R.44, nr 11, 1999, 607-613.

Google Scholar

[15] B. Pawłowska, R. E. Śliwa, Czynniki kształtu w określaniu siły wyciskania wyrobów o różnej geometrii przekroju poprzecznego, Rudy i Metale Nieżelazne, R.51, nr 4, 2006, 192-200.

Google Scholar

[16] B. Pawłowska, R.E. Śliwa, Wpływ czynników kształtu oraz własności wyciskanego profiluna efekt odkształcenia i poziom siły kształtowania. XIV Konferencja Sprawozdawcza Metalurgia 2006,.

Google Scholar

[17] W.Z. Misiolek , Extrusion of Aluminum alloys , ASM Handbook, Volume 14A: Metalworking: Bulk Forming S.L. Semiatin, editor, 522-527.

DOI: 10.31399/asm.hb.v14a.a0004015

Google Scholar

[18] Pradip Saha, book chaper on Extrusion and Drawing of Aluminum Alloys. ASM HANDBOOK Aluminum Science and Technology (2018).

Google Scholar

[19] R. Ye. Lapovok, M. R. Barnett, C. H. J. Davies,. Construction of extrusion limit diagram for AZ31 magnesium alloy by FE simulation. J. Mater. Process. Technol. 146, 2004, 408 – 414.

DOI: 10.1016/j.jmatprotec.2003.12.003

Google Scholar

[20] G.Sauer, Extrusion of Semifinished Products in Magnesium Alloys. Extrusion. 2nd ed., M. Bauser, G. Sauer, K. Siegert. ASM International, Materials Park, Ohio, 2006, 203 - 207. Available online: www.asminternational.org.

DOI: 10.31399/asm.tb.ex2.9781627083423

Google Scholar

[21] K. F. Zhang, D. L. Yin, D. Z.Wu,. Formability of AZ31 magnesium alloy sheets at warm working conditions. Int. J. Machine Tools and Manuf. 46, 2006, 1276 – 1280.

DOI: 10.1016/j.ijmachtools.2006.01.014

Google Scholar

[22] E. Hadasik, D. Kuc, G. Niewielski, R.E. Śliwa, Rozwój stopów magnezu do przeróbkiplastycznej; Hutnik - Wiadomości Hutnicze, 76 (8), 2009, 580 - 584.

DOI: 10.15199/24.2015.8.6

Google Scholar

[23] Z .Zeng, N. Stanford, C. H. J. Davies, J. F.Nie, N Birbilis, Magnesium extrusion alloys: a review of developments and prospects. International Materials Reviews, 64(1), 2019, 27-62.

DOI: 10.1080/09506608.2017.1421439

Google Scholar

[24] R. Ye. Lapovok, M. R Barnett, C. H. J. Davies,. Construction of extrusion limit diagram for AZ31 magnesium alloy by FE simulation. J. Mater. Process. Technol. 146, 2004,408 – 414.

DOI: 10.1016/j.jmatprotec.2003.12.003

Google Scholar

[25] G. Sauer, Extrusion of Semifinished Products in Magnesium Alloys. Extrusion. 2nd ed., M. Bauser, G. Sauer, K. Siegert. ASM International, Materials Park, Ohio, 2006, 203 - 207. Available online: www.asminternational.org.

DOI: 10.31399/asm.tb.ex2.9781627083423

Google Scholar

[26] E. Hadasik, D. Kuc, G. Niewielski, R.E Śliwa, Rozwój stopów magnezu do przeróbkiplastycznej; Hutnik - Wiadomości Hutnicze, 76 (8), 2009, 580 – 584.

DOI: 10.15199/24.2015.8.6

Google Scholar