[1]
N. Biba, S. Stebunov, A. Vlasov, Application of QForm Program for Improvement of the Die Design and Profile Extrusion Technology, Proceedings of ET Seminar, Orlando, USA, (2008).
Google Scholar
[2]
Sheppard, T. Extrusion of Aluminium Alloys, Kluwer Academic Publishers, Dordrecht, (1999).
Google Scholar
[3]
S.Z. Qamar, A.F.M. Arif, A.K. Sheikh, Analysis of product defects in a typical aluminum extrusion facility, Mater. Manuf. Process., 19 (2004) 391–405.
DOI: 10.1081/amp-120038650
Google Scholar
[4]
Ma X. Surface quality of aluminium extrusion products, Ph.D. thesis, Enschede: University of Twente, (2011).
Google Scholar
[5]
Neuhauser, F.M., Bachmann, G. & Hora, P. Surface defect classification and detection on extruded aluminum profiles using convolutional neural networks. Int J Mater Form 13, 591–603 (2020).
DOI: 10.1007/s12289-019-01496-1
Google Scholar
[6]
Babaniaris S., Beer A., Barnett M.R. The Influence of Process Parameters and Themomechanical History on Streaking Defects in AA6060 Extrusions, in: Ratvik A. (Eds.), Light Metals 2017, The Minerals, Metals & Materials Series. Springer, Cham., 2017, pp.371-377.
DOI: 10.1007/978-3-319-51541-0_46
Google Scholar
[7]
Babaniaris, S., Beer, A.G. & Barnett, M.R. Optical and Microstructural Origins of Thermomechanical Streaking Defects in Hot Extruded AA6060. Metall Mater Trans A 50, 5483-5493 (2019).
DOI: 10.1007/s11661-019-05428-1
Google Scholar
[8]
Y. Ma, X. Zhou, G.E. Thompson, J.-O. Nilsson, M. Gustavsson & A. Crispin. Origin of streaks on anodised aluminium alloy extrusions. Transactions of the IMF, 91:1, 11-16 (2013).
DOI: 10.1179/0020296712z.00000000075
Google Scholar
[9]
Plata M., Piwnik J. Theoretical and experimental analysis of seam weld formation in hot extrusion of aluminum alloys. 1 (2000), pp.205-211.
Google Scholar
[10]
L. Donati, L. Tomesani. The prediction of seam welds quality in aluminum extrusion. Journal of Materials Processing Technology. Volumes 153–154, 2004, Pages 366-373.
DOI: 10.1016/j.jmatprotec.2004.04.215
Google Scholar
[11]
L. Donati, L. Tomesani. The effect of die design on the production and seam weld quality of extruded aluminum profiles. Journal of Materials Processing Technology. Volumes 164–165, 2005, Pages 1025-1031.
DOI: 10.1016/j.jmatprotec.2005.02.156
Google Scholar
[12]
Schwane, M., Kloppenborg, T., Reeb, A., Ben Khalifa, N., Brosius, A., Weidenmann, K. A., & Tekkaya, A. E. Numerical Approach for the Evaluation of Seam Welding Criteria in Extrusion Processes. In Key Engineering Materials, (2012), (Vols. 504–506, p.517–522).
DOI: 10.4028/www.scientific.net/kem.504-506.517
Google Scholar
[13]
I. Kniazkin, A. Vlasov. Quality prediction of longitudinal seam welds in aluminium profile extrusion based on simulation. Procedia Manuf. 50, (2020), pp.433-438.
DOI: 10.1016/j.promfg.2020.08.079
Google Scholar
[14]
H.S. Valberg, M. Lefstad, A.L.d. Moraes Costa. On the mechanism of formation of back-end defects in the extrusion process, Procedia Manuf., 47 (2020) 245-252.
DOI: 10.1016/j.promfg.2020.04.207
Google Scholar
[15]
M. Negozio, R. Pelaccia, L. Donati, B. Reggiani, L. Tomesani, T. Pinter. FEM Validation of Front End and Back End Defects Evolution in AA6063 and AA6082 Aluminum Alloys Profiles. Procedia Manuf. 47, (2020), pp.202-208.
DOI: 10.1016/j.promfg.2020.04.178
Google Scholar
[16]
Reggiani, B., Pinter, T. & Donati, L. Scrap assessment in direct extrusion. Int. J. Adv. Manuf. Technol. 107, 2635–2647 (2020).
DOI: 10.1007/s00170-020-05127-x
Google Scholar
[17]
B. Reggiani and L. Donati. Experimental, Numerical, and Analytical Investigations on the Charge Weld Evolution in Extruded Profiles, Int. J. Adv. Manuf. Technol., 99 (2018) 1379-1387.
DOI: 10.1007/s00170-018-2595-4
Google Scholar
[18]
Negozio, M., Pelaccia, R., Donati, L. et al. Finite Element Model Prediction of Charge Weld Behaviour in AA6082 and AA6063 Extruded Profiles. J. of Materi. Eng and Perform 30, 4691–4699 (2021).
DOI: 10.1007/s11665-021-05752-x
Google Scholar
[19]
Reggiani, B., Segatori, A., Donati, L. et al. Prediction of charge welds in hollow profiles extrusion by FEM simulations and experimental validation. Int J Adv Manuf. Technol 69, 1855–1872 (2013).
DOI: 10.1007/s00170-013-5143-2
Google Scholar
[20]
Z. Peng & T. Sheppard. Study of surface cracking during extrusion of aluminium alloy AA 2014, Materials Science and Technology, 20:9, 1179-1191 (2004).
DOI: 10.1179/026708304225022016
Google Scholar
[21]
S. Ngernbamrung, Y. Suzuki, N. Takatsuji, K. Dohda. Investigation of surface cracking of hot-extruded AA7075 billet. Procedia Manuf. 15, (2018), pp.217-224.
DOI: 10.1016/j.promfg.2018.07.212
Google Scholar
[22]
X. Xu, X. Ma, G. Zhao, Y. Wang, X.Chen. Effects of abnormal grain growth at longitudinal weld on the aging behavior and mechanical properties of 2196 AlCuLi alloy profile. Materials & Design. Volume 210, (2021).
DOI: 10.1016/j.matdes.2021.110043
Google Scholar
[23]
Schikorra, M., Donati, L., Tomesani, L. et al. Microstructure analysis of aluminum extrusion: grain size distribution in AA6060, AA6082 and AA7075 alloys. J Mech Sci Technol 21, 1445 (2007).
DOI: 10.1007/bf03177357
Google Scholar
[24]
J.L.F. Aymone, E. Bittencourt, G.J. Creus, Simulation of 3D metal-forming using an arbitrary Lagrangian–Eulerian finite element method, Journal of Materials Processing Technology, Vol. 110, Issue 2, 2001, Pages 218-232.
DOI: 10.1016/s0924-0136(00)00886-4
Google Scholar
[25]
Skrzat, A. Application of coupled Eulerian-Lagrangian approach in metal forming simulations. Zesz. Nauk. Politech. Rzesz. Mech. 2012, 284, 25–35.
DOI: 10.7862/rm.2012.9
Google Scholar
[26]
Danchenko V.M., Milenin A.A., Golovko O.M. Production of profiles from aluminum alloys. Theory and technology,, 2002, Dnepropetrovsk, Ukraine, System technologies (In Russian).
Google Scholar
[27]
Donati, L., Khalifa, N.B., Tomesani, L. et al. Comparison of different FEM code approaches in the simulation of the die deflection during aluminium extrusion, Int. J. Mater. Form. 3 (2010) 375-378.
DOI: 10.1007/s12289-010-0785-1
Google Scholar
[28]
Den Bakker, A. Weld seams in aluminium alloy extrusions: Microstructure and properties, Ph.D. thesis, Delft: University of Technology, (2016).
Google Scholar