Prediction of Underfilling Defect in Aluminium Profile Extrusion Based on ALE Simulation

Article Preview

Abstract:

The paper presents a detailed analysis of metal flow inside the extrusion dies and demonstrates the investigation of the formation of underfilling defects. The stress state in the defect zones has been analyzed by means of simulation based on the Eulerian approach. Based on this, it was found that the mean stress (hydrostatic pressure) is not the only parameter that has to be placed into the criterion to get reliable results. The author proposes a new dimensionless underfilling criterion adapted for Eulerian mesh. It is based on analysis of simulation results obtained by QForm Extrusion FEM software [1] and practical experiments for different types of profiles. This criterion has been approved, and critical values have been obtained using a number of industrial projects from different areas of application.

You have full access to the following eBook

Info:

Periodical:

Pages:

537-544

Citation:

Online since:

July 2022

Authors:

Export:

Share:

Citation:

* - Corresponding Author

[1] N. Biba, S. Stebunov, A. Vlasov, Application of QForm Program for Improvement of the Die Design and Profile Extrusion Technology, Proceedings of ET Seminar, Orlando, USA, (2008).

Google Scholar

[2] Sheppard, T. Extrusion of Aluminium Alloys, Kluwer Academic Publishers, Dordrecht, (1999).

Google Scholar

[3] S.Z. Qamar, A.F.M. Arif, A.K. Sheikh, Analysis of product defects in a typical aluminum extrusion facility, Mater. Manuf. Process., 19 (2004) 391–405.

DOI: 10.1081/amp-120038650

Google Scholar

[4] Ma X. Surface quality of aluminium extrusion products, Ph.D. thesis, Enschede: University of Twente, (2011).

Google Scholar

[5] Neuhauser, F.M., Bachmann, G. & Hora, P. Surface defect classification and detection on extruded aluminum profiles using convolutional neural networks. Int J Mater Form 13, 591–603 (2020).

DOI: 10.1007/s12289-019-01496-1

Google Scholar

[6] Babaniaris S., Beer A., Barnett M.R. The Influence of Process Parameters and Themomechanical History on Streaking Defects in AA6060 Extrusions, in: Ratvik A. (Eds.), Light Metals 2017, The Minerals, Metals & Materials Series. Springer, Cham., 2017, pp.371-377.

DOI: 10.1007/978-3-319-51541-0_46

Google Scholar

[7] Babaniaris, S., Beer, A.G. & Barnett, M.R. Optical and Microstructural Origins of Thermomechanical Streaking Defects in Hot Extruded AA6060. Metall Mater Trans A 50, 5483-5493 (2019).

DOI: 10.1007/s11661-019-05428-1

Google Scholar

[8] Y. Ma, X. Zhou, G.E. Thompson, J.-O. Nilsson, M. Gustavsson & A. Crispin. Origin of streaks on anodised aluminium alloy extrusions. Transactions of the IMF, 91:1, 11-16 (2013).

DOI: 10.1179/0020296712z.00000000075

Google Scholar

[9] Plata M., Piwnik J. Theoretical and experimental analysis of seam weld formation in hot extrusion of aluminum alloys. 1 (2000), pp.205-211.

Google Scholar

[10] L. Donati, L. Tomesani. The prediction of seam welds quality in aluminum extrusion. Journal of Materials Processing Technology. Volumes 153–154, 2004, Pages 366-373.

DOI: 10.1016/j.jmatprotec.2004.04.215

Google Scholar

[11] L. Donati, L. Tomesani. The effect of die design on the production and seam weld quality of extruded aluminum profiles. Journal of Materials Processing Technology. Volumes 164–165, 2005, Pages 1025-1031.

DOI: 10.1016/j.jmatprotec.2005.02.156

Google Scholar

[12] Schwane, M., Kloppenborg, T., Reeb, A., Ben Khalifa, N., Brosius, A., Weidenmann, K. A., & Tekkaya, A. E. Numerical Approach for the Evaluation of Seam Welding Criteria in Extrusion Processes. In Key Engineering Materials, (2012), (Vols. 504–506, p.517–522).

DOI: 10.4028/www.scientific.net/kem.504-506.517

Google Scholar

[13] I. Kniazkin, A. Vlasov. Quality prediction of longitudinal seam welds in aluminium profile extrusion based on simulation. Procedia Manuf. 50, (2020), pp.433-438.

DOI: 10.1016/j.promfg.2020.08.079

Google Scholar

[14] H.S. Valberg, M. Lefstad, A.L.d. Moraes Costa. On the mechanism of formation of back-end defects in the extrusion process, Procedia Manuf., 47 (2020) 245-252.

DOI: 10.1016/j.promfg.2020.04.207

Google Scholar

[15] M. Negozio, R. Pelaccia, L. Donati, B. Reggiani, L. Tomesani, T. Pinter. FEM Validation of Front End and Back End Defects Evolution in AA6063 and AA6082 Aluminum Alloys Profiles. Procedia Manuf. 47, (2020), pp.202-208.

DOI: 10.1016/j.promfg.2020.04.178

Google Scholar

[16] Reggiani, B., Pinter, T. & Donati, L. Scrap assessment in direct extrusion. Int. J. Adv. Manuf. Technol. 107, 2635–2647 (2020).

DOI: 10.1007/s00170-020-05127-x

Google Scholar

[17] B. Reggiani and L. Donati. Experimental, Numerical, and Analytical Investigations on the Charge Weld Evolution in Extruded Profiles, Int. J. Adv. Manuf. Technol., 99 (2018) 1379-1387.

DOI: 10.1007/s00170-018-2595-4

Google Scholar

[18] Negozio, M., Pelaccia, R., Donati, L. et al. Finite Element Model Prediction of Charge Weld Behaviour in AA6082 and AA6063 Extruded Profiles. J. of Materi. Eng and Perform 30, 4691–4699 (2021).

DOI: 10.1007/s11665-021-05752-x

Google Scholar

[19] Reggiani, B., Segatori, A., Donati, L. et al. Prediction of charge welds in hollow profiles extrusion by FEM simulations and experimental validation. Int J Adv Manuf. Technol 69, 1855–1872 (2013).

DOI: 10.1007/s00170-013-5143-2

Google Scholar

[20] Z. Peng & T. Sheppard. Study of surface cracking during extrusion of aluminium alloy AA 2014, Materials Science and Technology, 20:9, 1179-1191 (2004).

DOI: 10.1179/026708304225022016

Google Scholar

[21] S. Ngernbamrung, Y. Suzuki, N. Takatsuji, K. Dohda. Investigation of surface cracking of hot-extruded AA7075 billet. Procedia Manuf. 15, (2018), pp.217-224.

DOI: 10.1016/j.promfg.2018.07.212

Google Scholar

[22] X. Xu, X. Ma, G. Zhao, Y. Wang, X.Chen. Effects of abnormal grain growth at longitudinal weld on the aging behavior and mechanical properties of 2196 AlCuLi alloy profile. Materials & Design. Volume 210, (2021).

DOI: 10.1016/j.matdes.2021.110043

Google Scholar

[23] Schikorra, M., Donati, L., Tomesani, L. et al. Microstructure analysis of aluminum extrusion: grain size distribution in AA6060, AA6082 and AA7075 alloys. J Mech Sci Technol 21, 1445 (2007).

DOI: 10.1007/bf03177357

Google Scholar

[24] J.L.F. Aymone, E. Bittencourt, G.J. Creus, Simulation of 3D metal-forming using an arbitrary Lagrangian–Eulerian finite element method, Journal of Materials Processing Technology, Vol. 110, Issue 2, 2001, Pages 218-232.

DOI: 10.1016/s0924-0136(00)00886-4

Google Scholar

[25] Skrzat, A. Application of coupled Eulerian-Lagrangian approach in metal forming simulations. Zesz. Nauk. Politech. Rzesz. Mech. 2012, 284, 25–35.

DOI: 10.7862/rm.2012.9

Google Scholar

[26] Danchenko V.M., Milenin A.A., Golovko O.M. Production of profiles from aluminum alloys. Theory and technology,, 2002, Dnepropetrovsk, Ukraine, System technologies (In Russian).

Google Scholar

[27] Donati, L., Khalifa, N.B., Tomesani, L. et al. Comparison of different FEM code approaches in the simulation of the die deflection during aluminium extrusion, Int. J. Mater. Form. 3 (2010) 375-378.

DOI: 10.1007/s12289-010-0785-1

Google Scholar

[28] Den Bakker, A. Weld seams in aluminium alloy extrusions: Microstructure and properties, Ph.D. thesis, Delft: University of Technology, (2016).

Google Scholar