Methodology to Investigate the Transformation Plasticity for Numerical Modelling of Hot Forging Processes

Article Preview

Abstract:

Hot forging is a complex process involving the mutual influence of numerous thermo-mechanical-metallurgical material phenomena. In particular, the strains of transformation-induced plasticity (TRIP) have a significant influence on the distortions and residual stresses of the components. The TRIP strains refer to the anisotropic strains depending on the orientation and significance of the stress conditions during cooling superimposed to the phase transformation. With the use of numerical models, the impact of this effect can be investigated in order to ensure the production of high quality components. However, an experimental determination of the characteristic values of TRIP is challenging, which is why only few corresponding data are available in the literature. Therefore, this paper presents an experimental and numerical methodology as well as the results of studies on the interaction between stresses and phase transformations in the materials AISI 4140 and AISI 52100. The investigations of the TRIP strains are carried out using hollow specimens, which are thermo-mechanically treated in the physical forming simulator Gleeble 3800-GTC. The specimens are austenitised, quenched to test temperature and held there while diffusion controlled phase transformation takes place. The extent of TRIP as a result of different superimposed tensile or compressive loads is determined by means of dilatometry. In addition, the extent of TRIP for diffusionless martensitic phase transformations was investigated by continuous cooling tests under tensile and compressive loads. It was found that the transformation plasticity varies depending on the material, the phase type, the temperature and the tensile or compressive stresses. Subsequently, simulations of the physical experiments using the FE software Simufact.Forming verified the determined phase specific values of TRIP.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] S. L. Semiatin, Introduction to Forming and Forging Processes,, in ASM Metals Handbook Volume 14 - Forming and Forging, Totten, G., Howes, M., Inoue, T., Ed., Novelty, Ohio, USA, (1998).

Google Scholar

[2] B.-A. Behrens et al., Numerical process design for targeted residual stress adjustment in hot bulk formed components taking into account macro- and microscale,, Forsch Ingenieurwes, vol. 85, no. 3, p.757–771, 2021,.

Google Scholar

[3] B.-A. Behrens et al., Experimental and Numerical Investigations of the Development of Residual Stresses in Thermo-Mechanically Processed Cr-Alloyed Steel 1.3505,, Metals, vol. 9, no. 4, p.480, 2019,.

DOI: 10.3390/met9040480

Google Scholar

[4] S. Denis, Considering Stress-Phase Transformation Interactions in the Calculation of Heat Treatment Residual Stresses,, in Mechanics of Solids with Phase Changes, M. Berveiller and F. D. Fischer, Eds., Vienna: Springer Vienna, 1997, p.293–317.

DOI: 10.1007/978-3-7091-2660-8_10

Google Scholar

[5] B.-A. Behrens and P. Olle, Consideration of Phase Transformations in Numerical Simulation of Press Hardening,, steel research international, vol. 78, 10-11, p.784–790, 2007,.

DOI: 10.1002/srin.200706286

Google Scholar

[6] B.-A. Behrens, A. Bouguecha, C. Bonk, and A. Chugreev, Numerical and experimental investigations of the anisotropic transformation strains during martensitic transformation in a low alloy Cr-Mo steel 42CrMo4,, Procedia Engineering, vol. 207, p.1815–1820, 2017,.

DOI: 10.1016/j.proeng.2017.10.944

Google Scholar

[7] E. Doege, H. Meyer-Nolkemper, and I. Saeed, Fließkurvenatlas metallischer Werkstoffe: Mit Fließkurven für 73 Werkstoffe und einer grundlegenden Einführung. München, Wien: Hanser, (1986).

Google Scholar

[8] Test Method for Youngs Modulus, Tangent Modulus, and Chord Modulus, E28 Committee, West Conshohocken, PA.

DOI: 10.1520/e0111-04

Google Scholar

[9] H. A. Kuhn, Uniaxial Compression Testing, (2000).

Google Scholar

[10] Test Method for Linear Thermal Expansion of Solid Materials With a Push-Rod Dilatometer, E37 Committee, West Conshohocken, PA.

DOI: 10.1520/e0228-11r16

Google Scholar

[11] Practice for Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations, A01 Committee, West Conshohocken, PA.

DOI: 10.1520/a1033

Google Scholar

[12] B.-A. Behrens, K. Brunotte, H. Wester, and C. Kock, Targeted adjustment of residual stresses in hot-formed components by means of process design based on finite element simulation,, Arch Appl Mech, vol. 91, no. 8, p.3579–3602, 2021,.

DOI: 10.1007/s00419-021-01928-y

Google Scholar

[13] C. Şimşir, 3D finite element simulation of steel quenching in order to determine the microstructure and residual stresses,, (2008).

Google Scholar

[14] B.-A. Behrens and J. Schrödter, Numerical Simulation of Phase Transformation during the Hot Stamping Process,, Thermal Process Modeling: Proceedings from the 5th International Conference on Thermal Process Modeling and Computer Simulation, (2014).

Google Scholar

[15] P. Olle, Numerische und experimentelle Untersuchungen zum Presshärten. Zugl.: Hannover, Univ., Diss., 2010. Garbsen: PZH Produktionstechn. Zentrum, (2010).

Google Scholar

[16] H. P. Hougardy and K. Yamazaki, An improved calculation of the transformation of steels,, Steel Research, vol. 57, no. 9, p.466–471, 1986,.

DOI: 10.1002/srin.198600805

Google Scholar

[17] A. Chugreev, Numerische und experimentelle Untersuchungen zur Simulation von Rotationsreibschweißprozessen,, Dissertation, TEWISS - Technik und Wissen GmbH, (2021).

Google Scholar

[18] Sente Software Ldt., JMatPro. Practical software for materials propertie. [Online]. Available: https://​www.sentesoftware.co.uk​/​jmatpro (accessed: Nov. 15 2021).

Google Scholar

[19] Z. Guo, N. Saunders, P. Miodownik, and J. P. Schille, Modelling phase transformations and material properties critical to the prediction of distortion during the heat treatment of steels,, IJMMP, vol. 4, no. 2, p.187, 2009,.

DOI: 10.1504/ijmmp.2009.028632

Google Scholar

[20] M. Dalgic and G. Löwisch, Einfluss einer aufgeprägten Spannung auf die isotherme, perlitische und bainitische Umwandlung des Wälzlagerstahls 100Cr6,, HTM Journal of Heat Treatment and Materials, vol. 59, no. 1, p.28–34, 2004,.

DOI: 10.3139/105.100271

Google Scholar

[21] U. Ahrens, Beanspruchungsabhängiges Umwandlungsverhalten und Umwandlungsplastizität niedrig legierter Stähle mit unterschiedlich hohen Kohlenstoffgehalten, (2003).

Google Scholar

[22] J.-C. Videau, G. Cailletaud, and A. Pineau, Experimental Study of the Transformation-Induced Plasticity in a Cr-Ni-Mo-Al-Ti Steel,, J. Phys. IV France, vol. 06, C1, C1-465-C1-474, 1996,.

DOI: 10.1051/jp4:1996145

Google Scholar

[23] F. Abrassart, Stress-induced γ→ α martensitic transformation in two carbon stainless steels. Application to trip steels,, MT, vol. 4, no. 9, p.2205–2216, 1973,.

DOI: 10.1007/bf02643289

Google Scholar

[24] S. Sjöström, Interactions and constitutive models for calculating quench stresses in steel,, Materials Science and Technology, vol. 1, no. 10, p.823–829, 1985,.

DOI: 10.1179/mst.1985.1.10.823

Google Scholar

[25] F. D. Fischer, E. R. Oberaigner, K. Tanaka, and F. Nishimura, Transformation induced plasticity revised an updated formulation,, International Journal of Solids and Structures, vol. 35, no. 18, p.2209–2227, 1998,.

DOI: 10.1016/s0020-7683(97)00134-0

Google Scholar

[26] J. B. Leblond, J. Devaux, and J. C. Devaux, Mathematical modelling of transformation plasticity in steels I: Case of ideal-plastic phases,, International Journal of Plasticity, vol. 5, no. 6, p.551–572, 1989,.

DOI: 10.1016/0749-6419(89)90001-6

Google Scholar

[27] J. B. Leblond, Mathematical modelling of transformation plasticity in steels II: Coupling with strain hardening phenomena,, International Journal of Plasticity, vol. 5, no. 6, p.573–591, 1989,.

DOI: 10.1016/0749-6419(89)90002-8

Google Scholar

[28] A. Turetta, S. Bruschi, and A. Ghiotti, Investigation of 22MnB5 formability in hot stamping operations,, Journal of Materials Processing Technology, vol. 177, 1-3, p.396–400, 2006,.

DOI: 10.1016/j.jmatprotec.2006.04.041

Google Scholar

[29] G. Besserdich, B. Scholtes, H. Müller, and E. Macherauch, Consequences of transformation plasticity on the development of residual stresses and distortions during martensitic hardening of SAE 4140 steel cylinders,, Steel Research, vol. 65, no. 1, p.41–46, 1994,.

DOI: 10.1002/srin.199400924

Google Scholar

[30] B.-A. Behrens, A. Bouguecha, C. Bonk, and A. Chugreev, Experimental investigations on the transformation-induced plasticity in a high tensile steel under varying thermo-mechanical loading,, Computer Methods in Material Science, no. 17, p.36–43, (2017).

Google Scholar

[31] DIN EN ISO 683-17:2015-02, Für eine Wärmebehandlung bestimmte Stähle, legierte Stähle und Automatenstähle_- Teil_17: Wälzlagerstähle (ISO_683-17:2014); Deutsche Fassung EN_ISO_683-17:2014, Berlin.

DOI: 10.31030/2275155

Google Scholar

[32] DIN EN ISO 683-1:2018-09, Für eine Wärmebehandlung bestimmte Stähle, legierte Stähle und Automatenstähle_- Teil_1: Unlegierte Vergütungsstähle (ISO_683-1:2016); Deutsche Fassung EN_ISO_683-1:2018, Berlin.

DOI: 10.31030/2862248

Google Scholar

[33] B.-A. Behrens, A. Chugreev, and C. Kock, Experimental-numerical approach to efficient TTT-generation for simulation of phase transformations in thermomechanical forming processes,, IOP Conf. Ser.: Mater. Sci. Eng., vol. 461, p.12040, 2018,.

DOI: 10.1088/1757-899x/461/1/012040

Google Scholar

[34] Aufstellung von Zeit-Temperatur-Umwandlungsschaubildern für Eisenlegierungen, SEP 1680, Verein Deutscher Eisenhüttenleute, (2019).

Google Scholar

[35] B.-A. Behrens, A. Chugreev, C. Kock, Macroscopic FE-simulaion of residual stresses in thermo-mechanically processed steels considering phase transformation effects: XV International Conference on Computational Plasticity - Fundamentals and Applications: Barcelona, Spain, September 3-5, 2019,, Sep. (2019).

Google Scholar