Investigation of the Influence by Size Effects on the Material Characterization of the Uniaxial Compression Stress State

Article Preview

Abstract:

For the evaluation of final component properties under consideration of production-induced material characteristics, it is necessary to determine the mechanical parameters of parts and structures. Thus, there is a need of new test methods for the material characterization and quality control of produced goods. The miniaturization of the test specimens offers the potential for the local testing of the material properties at almost any position on the component. However, due to the reduction in size of the test specimens, size effects can occur which may affect the material behavior. For this reason, this contribution analyses the influence of size effects on the derived material parameters in dependence of the specimen size and material by using upsetting tests according to DIN 50106:2016 standard. The materials Cu-OFE (copper), X5CrNi18-10 (stainless steel) and AA7075-T6 (aluminum) are investigated to ensure a broad transferability of the findings. The specimens are cut from a bar stock by using a high precision 3D micro electrical discharge milling machining. Due to the small size, every specimen is measured with an optical 3D coordinate measuring system to determine the exact size. Through these investigations, the reproducibility and scatter in the determination of material properties for scaled cylindrical upsetting specimens are evaluated. Furthermore, limits of geometric dimensions at constant aspect ratios are derived. The results of this investigation enable an estimation of the geometrical influence of the specimen size in regard to the mechanical properties.

You have full access to the following eBook

Info:

Periodical:

Pages:

955-962

Citation:

Online since:

July 2022

Export:

Share:

Citation:

* - Corresponding Author

[1] D.A. Hughes, N. Hansen, The microstructural origin of work hardening stages, Acta Materialia, 148 (2018) 374–83.

DOI: 10.1016/j.actamat.2018.02.002

Google Scholar

[2] DIN EN ISO 6892-1: 2017-02, Metallische Werkstoffe - Zugversuch – Teil 1: Prüfverfahren bei Raumtemperatur, Berlin: Beuth Verlag GmbH.

DOI: 10.31030/2384831

Google Scholar

[3] DIN 50106: 2016-11, Prüfung metallischer Werkstoffe - Druckversuch bei Raumtemperatur, Berlin: Beuth Verlag GmbH.

DOI: 10.31030/2543152

Google Scholar

[4] M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engel, Microforming. CIRP Annals, 50 (2001) 445–62.

DOI: 10.1016/s0007-8506(07)62991-6

Google Scholar

[5] A, Messner, U. Engel, R. Kals, F. Vollertsen, Size effect in the FE-simulation of micro-forming processesm, Journal of Materials Processing Technology 45 (1994) 371–376.

DOI: 10.1016/0924-0136(94)90368-9

Google Scholar

[6] J.G. Liu, M.W. Fu, W.L. Chan, A constitutive model for modeling of the deformation behavior in microforming with a consideration of grain boundary strengthening, Computational Materials Science, 55 (2012) 85–94.

DOI: 10.1016/j.commatsci.2011.11.018

Google Scholar

[7] U. Engel, E. Egerer, Basic Research on Cold and Warm Forging of Microparts, KEM, 233-236 (2003) 449–456.

DOI: 10.4028/www.scientific.net/kem.233-236.449

Google Scholar

[8] M. Arthur, Kaltmassivumformung metallischer Kleinstteile Werkstoffverhalten, Wirkflächenreibung, Prozeßauslegung, Bamberg: Meisenbach, (1998).

Google Scholar

[9] E. Siebel, Die Formgebung im bildsamen Zustand, Düsseldorf: Stahleisen, (1932).

Google Scholar

[10] M. Lenzen, M. Kraus, M. Merklein, Analytical friction force compensation of flow curves out of layer compression tests with the pin extrusion test, Int J Mater Form, 38 (2020) 405.

DOI: 10.1007/s12289-020-01555-y

Google Scholar

[11] DIN EN ISO 643: 2020-06, Stahl - Mikrophotographische Bestimmung der erkennbaren Korngröße, Berlin: Beuth Verlag GmbH.

DOI: 10.31030/3141695

Google Scholar