Application of the DIC System to Build a Forming Limit Diagram (FLD) of Multilayer Materials

Article Preview

Abstract:

The extraordinary combination of strength and ductility of multilayered materials makes them attractive in the various applications and industries (military, aerospace, energy industry etc.). In the present work, the investigated materials were joined into multilayered sheet using the explosive welding method. The three-layer material was made of two titanium sheets and one Armco iron sheet in between. Materials produced by explosive welding can easily be used in a simple deformation process, but more complex processes that employ a more complex mechanical state are still not sufficiently studied. The presented study analyzes the possibilities of using Ti - Armco - Ti sheet for the deep drawing process. For this purpose, the forming limit diagram (FLD) has been constructed and verified. FLD is one of the most important tools in the analysis of sheet metal forming processes. In the presented work the non-standard method (Erichsen test) coupled with Digital Image Correlation analysis was used. The obtained results confirmed that the method of producing the tested sheet and the morphology of the microstructure created have a direct impact on the deformation mechanisms.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] A. Chiba, K. Hokamaoto, M. Nishida, M. Fujita, Fabrication of maraging steel base multilayered composites using single-shot explosive welding technique, Adv.'93 (1994) 701-704.

DOI: 10.1016/b978-0-444-81991-8.50171-0

Google Scholar

[2] S. Berski, H. Dyja, A. Maranda, J. Nowaczewski, G. Banaszek, Analysis of quality of bimetallic rod after extrusion process, J. Mater. Process. Tech. 177 (2006) 582-586.

DOI: 10.1016/j.jmatprotec.2006.04.107

Google Scholar

[3] F. Grignon, D. Benson, K. S. Vecchio, M. A. Meyers, Explosive welding of aluminum to aluminum: analysis, computations and experiments, Int. J. Impact. Eng. 30 (2004) 1333-1351.

DOI: 10.1016/j.ijimpeng.2003.09.049

Google Scholar

[4] Z. Chen, J. Xu, H. Zhou, D. Chen, M. Yang, H. Ma, Z. Shen, B. Zhang, Experimental and numerical investigation on fabricating multiple plates by an energy effective explosive welding technique, J. Mater. Res. Technol. 14 (2021) 3111-3122.

DOI: 10.1016/j.jmrt.2021.08.129

Google Scholar

[5] I. A. Bataev, T. S. Ogneva, A. A. Bataev, V. I. Mali, M.A. Esikov, D. V. Lazurenko, Y. Guo, A. M. Jorge Junior, Explosively welded multilayer Ni–Al composites, Mater. Des. 88 (2015) 1082-1087.

DOI: 10.1016/j.matdes.2015.09.103

Google Scholar

[6] K. H. Chang, Sheet Metal Forming Simulation, in: K. H. Chang (Ed.), e-Design, Academic Press, 2015, pp.685-741.

Google Scholar

[7] N. J. Den Uijl, L. J. Carless, Advanced metal-forming technologies for automotive applications, in: J. Rowe (Ed.), Advanced Materials in Automotive Engineering, Woodhead Publishing, 2012, 28-56.

DOI: 10.1533/9780857095466.28

Google Scholar

[8] R. R. Goud, K. E. Prasad, S. K. Singh, Formability limit diagrams of extra-deep-drawing steel at elevated temperatures, Procedia Materials Science, 6 (2014) 123-128.

DOI: 10.1016/j.mspro.2014.07.014

Google Scholar

[9] J. Li, X. Xie, G. Yang, C. Du, L. Yang, Forming Limit Diagram Determination Using Digital Image Correlation: A Review, in: M. Sutton, P. L. Reu (Eds.) International Digital Imaging Correlation Society, 2017, pp.59-61.

DOI: 10.1007/978-3-319-51439-0_14

Google Scholar

[10] K. Wang, J. E. Carsley, B. He, J. Li, L. Zhang, Measuring forming limit strains with digital image correlation analysis, J. Mater. Process. Technol., 214 (2014) 1120-1130.

DOI: 10.1016/j.jmatprotec.2014.01.001

Google Scholar

[11] M. A. Sutton, J – J Orteu, H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurements, Springer, Columbia, (2009).

DOI: 10.1007/978-0-387-78747-3

Google Scholar

[12] A. Roatta, M. Stout, J. W. Signorelli, Determination of the Forming-Limit Diagram from Deformations within Necking Instability: A Digital Image Correlation-Based Approach, J. Mater. Eng. Perform., 29 (2020) 4018-4031.

DOI: 10.1007/s11665-020-04908-5

Google Scholar

[13] D. Banabic, Formability of Metallic Materials: Plastic Anisotropy, Formability Testing, Forming Limits. Springer Science & Business Media, Berlin, (2000).

Google Scholar

[14] ISO12004-2, Metallic Materials – Sheet and strip – Determination of Forming Limit Curves – Part 2: Determination of Forming Limit Curves in the Laboratory. International Organization for Standardization (2008).

DOI: 10.3403/30150423u

Google Scholar

[15] M. Kwiecień, Ł. Lisiecki, P. Lisiecka – Graca, J. Majta, K. Muszka, Study of Deformation Behavior of Multilayered Sheets Using Digital Image Correlation, Procedia Manuf., 47 (2020) 1257-1263.

DOI: 10.1016/j.promfg.2020.04.199

Google Scholar