Study of the Chromium VI Adsorption by the Employment of a Biocomposite Based on Rice Husk and Chitosan

Article Preview

Abstract:

This current work has focused on the evaluation of the hexavalent chromium – Cr (VI) adsorption carried out by a biocomposite based on rice husk and chitosan. The chromium IV is an agro industrial contaminant residual while chitosan is a natural biopolymer with a great adsorption of heavy metals. Conditions for the biosorption such as concentrations of rice husk and Cr (VI) alongside the contact time, were identified in order to achieve the highest biosorpion of the heavy metal – Cr (VI). The morphology of rice husk, carried out in a Scanning Electron Microscopy (SEM), showed a porous surface which can allow the adherence of chitosan. Different concentrations of rice husk (10, 20, 30, 40, 50 ) were used for the synthesis of the biopolymer. Furthermore, the capacity of Cr (VI) adsorption of the biocomposite based on rice husk and chitosan was evaluated throughout the contact time, resulting in a 68.28 % of Cr (IV) removal at 120 minutes. Additionally, the results of the experimental design consistent with the adsorption kinetic designs are shown in this work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-115

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wang Y, Su H, Gu Y, Song X, Zhao J. Carcinogenicity of chromium and chemoprevention: a brief update. Onco Targets Ther. 2017;10:4065-4079.

DOI: 10.2147/ott.s139262

Google Scholar

[2] Oh, Y.J., Song, H., Shin, W.S., Choi, S. J., & Kim, Y.-H. (2007). Effect of amorphous silica and silica sand on removal of chromium (VI) by zero-valent iron. Chemosphere, 66(5), 858-865.

DOI: 10.1016/j.chemosphere.2006.06.034

Google Scholar

[3] Eskin, M. (2016). Chromium: Is It Essential and Is It Safe?. Vitamins & Minerals. 05.

Google Scholar

[4] Kamaludeen, S. P., Megharaj, M., Juhasz, A. L., Sethunathan, N., & Naidu, R. (2003). Chromium-microorganism interactions in soils: remediation implications. In Reviews of Environmental Contamination and Toxicology (pp.93-164): Springer.

DOI: 10.1007/0-387-21728-2_4

Google Scholar

[5] Domingo-Pueyo, A., Sanz-Valero, J., & Wanden-Berghe, C. J. A. P. R. L. (2014). Efectos sobre la salud de la exposición laboral al cromo y sus compuestos: revisión sistemática. 17(3), 142-153.

DOI: 10.12961/aprl.2014.17.3.03

Google Scholar

[6] Murgueitio, E., Pinto, W., & Landivar, J.J.R. d. l.S.Q.d.P. (2015). Remoción de cromo (VI) a partir de agua sintética a nivel de laboratorio, mediante el uso de hidróxidos dobles laminares (HDL). 81(2), 160-170.

DOI: 10.37761/rsqp.v81i2.26

Google Scholar

[7] Oliveira, D.Q., Gonçalves, M., Oliveira, L.C., & Guilherme, L. R. J. J. o. H. M. (2008). Removal of As (V) and Cr (VI) from aqueous solutions using solid waste from leather industry. 151(1), 280-284.

DOI: 10.1016/j.jhazmat.2007.11.001

Google Scholar

[8] Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., & Gascó, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth, 5(1), 65-75.

DOI: 10.5194/se-5-65-2014

Google Scholar

[9] Ding, Y., Jing, D., Gong, H., Zhou, L., & Yang, X. (2012). Biosorption of aquatic cadmium (II) by unmodified rice straw. Bioresource technology, 114, 20-25.

DOI: 10.1016/j.biortech.2012.01.110

Google Scholar

[10] Shen, F., Su, J., Zhang, X., Zhang, K., & Qi, X. J. I. j. o. b. m. (2016). Chitosan-derived carbonaceous material for highly efficient adsorption of chromium (VI) from aqueous solution. 91, 443-449.

DOI: 10.1016/j.ijbiomac.2016.05.103

Google Scholar

[11] Sultana, F., Uddin, M. K., Kabir, M. M., Sultana, N., Sikder, M. T., & Rahman, S. J. I. J. o. E. S. (2016). Removal efficiency of chromium (VI) ions from aqueous solution by adsorption of rice husk and saw dust ash as a homogeneous composite. 6(6), 987-994.

DOI: 10.5004/dwt.2020.24854

Google Scholar

[12] Pourfadakari, S., Jorfi, S., Ahmadi, M., & Takdastan, A. J. D. i. b. (2017). Experimental data on adsorption of Cr (VI) from aqueous solution using nanosized cellulose fibers obtained from rice husk. 15, 887-895.

DOI: 10.1016/j.dib.2017.10.043

Google Scholar

[13] Suwan, J., Zhang, Z., Li, B., Vongchan, P., Meepowpan, P., Zhang, F., . . . Kongtawelert, P. (2009). Sulfonation of papain-treated chitosan and its mechanism for anticoagulant activity. Carbohydrate research, 344(10), 1190-1196.

DOI: 10.1016/j.carres.2009.04.016

Google Scholar

[14] Wang, Q., Du, Y. m., & Fan, L. h. (2005). Properties of chitosan/poly (vinyl alcohol) films for drug‐controlled release. Journal of Applied Polymer Science, 96(3), 808-813.

DOI: 10.1002/app.21518

Google Scholar

[15] Ababneh, H., & Hameed, B. H. (2021). Chitosan-derived hydrothermally carbonized materials and its applications: A review of recent literature. International Journal of Biological Macromolecules, 186, 314–327.

DOI: 10.1016/j.ijbiomac.2021.06.161

Google Scholar

[16] Cheung, W., Szeto, Y., & McKay, G. (2009). Enhancing the adsorption capacities of acid dyes by chitosan nano particles. Bioresource technology, 100(3), 1143-1148.

DOI: 10.1016/j.biortech.2008.07.071

Google Scholar

[17] J. Almirón, B. Chavez y F. Roudent, «Obtención de películas biodegradables mediante la gestión de residuos orgánicos que contienen almidón y quitosano,» Actas de la multiconferencia internacional LACCEI de ingeniería, educación y tecnología, 27 Julio (2020).

DOI: 10.18687/laccei2020.1.1.402

Google Scholar

[18] Qiu, W., Vakili, M., Cagnetta, G., Huang, J., & Yu, G. J. I. J. o. B. M. (2020). Effect of high energy ball milling on organic pollutant adsorption properties of chitosan. 148, 543-549.

DOI: 10.1016/j.ijbiomac.2020.01.171

Google Scholar

[19] Garces Jaraba, L y Coavas Romero, S. (2012.). Evaluación de la capacidad de adsorción en la cáscara de naranja (Citrus sinensis) modificada con quitosano para la remoción de Cr (VI) en aguas residuales. Universidad de Cartagena.

DOI: 10.26490/uncp.1990-7044.2013.1.329

Google Scholar

[20] Chen, S., Qin, C., Wang, T., Chen, F., Li, X., Hou, H., & Zhou, M. J. J. o. M. L. (2019). Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. 285, 62-74.

DOI: 10.1016/j.molliq.2019.04.035

Google Scholar

[21] Pham, T. D., Bui, T. T., Trang Truong, T. T., Hoang, T. H., Le, T. S., Duong, V. D., Yamaguchi, A., Kobayashi, M., & Adachi, Y. (2020). Adsorption characteristics of beta-lactam cefixime onto nanosilica fabricated from rice HUSK with surface modification by polyelectrolyte. Journal of Molecular Liquids, 298(111981), 111981.

DOI: 10.1016/j.molliq.2019.111981

Google Scholar

[22] Bishnoi, N. R., Bajaj, M., Sharma, N., & Gupta, A. (2004). Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. Bioresource technology, 91(3), 305-307.

DOI: 10.1016/s0960-8524(03)00204-9

Google Scholar

[23] Periyasamy, S., Manivasakan, P., Jeyaprabha, C., Meenakshi, S., & Viswanathan, N. (2019). Fabrication of nano-graphene oxide hydrotalcite/chitosan biocomposite: An efficient adsorbent for chromium removal from water. International journal of biological macromolecules.

DOI: 10.1016/j.ijbiomac.2019.03.232

Google Scholar

[24] Castro, S., Cerda, R., Betanco, N., Canelo, F., López, X., García, A., & Benavente, M. (2014). Estudio del equilibrio y cinética de adsorción de Cd(II), Ni(II) y Cr(VI) usando Quitosano y Quitosano modificado con cobre. Nexo Revista Científica, 26(2), 56–68.

DOI: 10.5377/nexo.v26i2.1285

Google Scholar

[25] Muniyappan, R., Viswanathan, N., & Meenakshi, S. (s/f). Adsorption mechanism of hexavalent chromium removal using Amberlite IRA 743 resin. Vscht.cz. Recuperado el 2 de febrero de 2022, de http://iel.vscht.cz/articles/1803-4039-03-0025.pdf.

Google Scholar

[26] Acosta Arguello, H. A., Barraza Yance, C. A., & Albis Arrieta, A. R. (2017). Adsorption of chromium (VI) using cassava peel (Manihot esculenta) as biosorbent: A kinetic study. Ingeniería y Desarrollo, 35(1), 58–76.

DOI: 10.14482/inde.35.1.8943

Google Scholar

[27] A.E. Navarro, H. Musaev, and K. Serran, Adsorption Kinetics of Cobalt (II) Ions onto Alginate Beads from Aqueous Solutions,, J. Earth Sci. Clim. Change, vol. 5, n°. 223, p.2, (2014).

DOI: 10.4172/2157-7617.1000223

Google Scholar

[28] B. Rehm, Alginate Production: Precursor Biosynthesis, Polymerization and Secretion,, in Alginates: Biology and Applications, Berlin, Deustchland: Springer, vol. 13, pp.55-71, (2009).

DOI: 10.1007/978-3-540-92679-5_2

Google Scholar

[29] P. Kotrba, Microbial Biosorption of Metals. New York: Springer, (2011).

Google Scholar

[30] S. Arris, M. B. Lehocine and A.H. Meniai, Sorption study of chromium sorption from wastewater using cereal by-products,, Int. J. Hydrogen Energy, to be published.

DOI: 10.1016/j.ijhydene.2014.09.147

Google Scholar