[1]
Wang Y, Su H, Gu Y, Song X, Zhao J. Carcinogenicity of chromium and chemoprevention: a brief update. Onco Targets Ther. 2017;10:4065-4079.
DOI: 10.2147/ott.s139262
Google Scholar
[2]
Oh, Y.J., Song, H., Shin, W.S., Choi, S. J., & Kim, Y.-H. (2007). Effect of amorphous silica and silica sand on removal of chromium (VI) by zero-valent iron. Chemosphere, 66(5), 858-865.
DOI: 10.1016/j.chemosphere.2006.06.034
Google Scholar
[3]
Eskin, M. (2016). Chromium: Is It Essential and Is It Safe?. Vitamins & Minerals. 05.
Google Scholar
[4]
Kamaludeen, S. P., Megharaj, M., Juhasz, A. L., Sethunathan, N., & Naidu, R. (2003). Chromium-microorganism interactions in soils: remediation implications. In Reviews of Environmental Contamination and Toxicology (pp.93-164): Springer.
DOI: 10.1007/0-387-21728-2_4
Google Scholar
[5]
Domingo-Pueyo, A., Sanz-Valero, J., & Wanden-Berghe, C. J. A. P. R. L. (2014). Efectos sobre la salud de la exposición laboral al cromo y sus compuestos: revisión sistemática. 17(3), 142-153.
DOI: 10.12961/aprl.2014.17.3.03
Google Scholar
[6]
Murgueitio, E., Pinto, W., & Landivar, J.J.R. d. l.S.Q.d.P. (2015). Remoción de cromo (VI) a partir de agua sintética a nivel de laboratorio, mediante el uso de hidróxidos dobles laminares (HDL). 81(2), 160-170.
DOI: 10.37761/rsqp.v81i2.26
Google Scholar
[7]
Oliveira, D.Q., Gonçalves, M., Oliveira, L.C., & Guilherme, L. R. J. J. o. H. M. (2008). Removal of As (V) and Cr (VI) from aqueous solutions using solid waste from leather industry. 151(1), 280-284.
DOI: 10.1016/j.jhazmat.2007.11.001
Google Scholar
[8]
Paz-Ferreiro, J., Lu, H., Fu, S., Méndez, A., & Gascó, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth, 5(1), 65-75.
DOI: 10.5194/se-5-65-2014
Google Scholar
[9]
Ding, Y., Jing, D., Gong, H., Zhou, L., & Yang, X. (2012). Biosorption of aquatic cadmium (II) by unmodified rice straw. Bioresource technology, 114, 20-25.
DOI: 10.1016/j.biortech.2012.01.110
Google Scholar
[10]
Shen, F., Su, J., Zhang, X., Zhang, K., & Qi, X. J. I. j. o. b. m. (2016). Chitosan-derived carbonaceous material for highly efficient adsorption of chromium (VI) from aqueous solution. 91, 443-449.
DOI: 10.1016/j.ijbiomac.2016.05.103
Google Scholar
[11]
Sultana, F., Uddin, M. K., Kabir, M. M., Sultana, N., Sikder, M. T., & Rahman, S. J. I. J. o. E. S. (2016). Removal efficiency of chromium (VI) ions from aqueous solution by adsorption of rice husk and saw dust ash as a homogeneous composite. 6(6), 987-994.
DOI: 10.5004/dwt.2020.24854
Google Scholar
[12]
Pourfadakari, S., Jorfi, S., Ahmadi, M., & Takdastan, A. J. D. i. b. (2017). Experimental data on adsorption of Cr (VI) from aqueous solution using nanosized cellulose fibers obtained from rice husk. 15, 887-895.
DOI: 10.1016/j.dib.2017.10.043
Google Scholar
[13]
Suwan, J., Zhang, Z., Li, B., Vongchan, P., Meepowpan, P., Zhang, F., . . . Kongtawelert, P. (2009). Sulfonation of papain-treated chitosan and its mechanism for anticoagulant activity. Carbohydrate research, 344(10), 1190-1196.
DOI: 10.1016/j.carres.2009.04.016
Google Scholar
[14]
Wang, Q., Du, Y. m., & Fan, L. h. (2005). Properties of chitosan/poly (vinyl alcohol) films for drug‐controlled release. Journal of Applied Polymer Science, 96(3), 808-813.
DOI: 10.1002/app.21518
Google Scholar
[15]
Ababneh, H., & Hameed, B. H. (2021). Chitosan-derived hydrothermally carbonized materials and its applications: A review of recent literature. International Journal of Biological Macromolecules, 186, 314–327.
DOI: 10.1016/j.ijbiomac.2021.06.161
Google Scholar
[16]
Cheung, W., Szeto, Y., & McKay, G. (2009). Enhancing the adsorption capacities of acid dyes by chitosan nano particles. Bioresource technology, 100(3), 1143-1148.
DOI: 10.1016/j.biortech.2008.07.071
Google Scholar
[17]
J. Almirón, B. Chavez y F. Roudent, «Obtención de películas biodegradables mediante la gestión de residuos orgánicos que contienen almidón y quitosano,» Actas de la multiconferencia internacional LACCEI de ingeniería, educación y tecnología, 27 Julio (2020).
DOI: 10.18687/laccei2020.1.1.402
Google Scholar
[18]
Qiu, W., Vakili, M., Cagnetta, G., Huang, J., & Yu, G. J. I. J. o. B. M. (2020). Effect of high energy ball milling on organic pollutant adsorption properties of chitosan. 148, 543-549.
DOI: 10.1016/j.ijbiomac.2020.01.171
Google Scholar
[19]
Garces Jaraba, L y Coavas Romero, S. (2012.). Evaluación de la capacidad de adsorción en la cáscara de naranja (Citrus sinensis) modificada con quitosano para la remoción de Cr (VI) en aguas residuales. Universidad de Cartagena.
DOI: 10.26490/uncp.1990-7044.2013.1.329
Google Scholar
[20]
Chen, S., Qin, C., Wang, T., Chen, F., Li, X., Hou, H., & Zhou, M. J. J. o. M. L. (2019). Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. 285, 62-74.
DOI: 10.1016/j.molliq.2019.04.035
Google Scholar
[21]
Pham, T. D., Bui, T. T., Trang Truong, T. T., Hoang, T. H., Le, T. S., Duong, V. D., Yamaguchi, A., Kobayashi, M., & Adachi, Y. (2020). Adsorption characteristics of beta-lactam cefixime onto nanosilica fabricated from rice HUSK with surface modification by polyelectrolyte. Journal of Molecular Liquids, 298(111981), 111981.
DOI: 10.1016/j.molliq.2019.111981
Google Scholar
[22]
Bishnoi, N. R., Bajaj, M., Sharma, N., & Gupta, A. (2004). Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. Bioresource technology, 91(3), 305-307.
DOI: 10.1016/s0960-8524(03)00204-9
Google Scholar
[23]
Periyasamy, S., Manivasakan, P., Jeyaprabha, C., Meenakshi, S., & Viswanathan, N. (2019). Fabrication of nano-graphene oxide hydrotalcite/chitosan biocomposite: An efficient adsorbent for chromium removal from water. International journal of biological macromolecules.
DOI: 10.1016/j.ijbiomac.2019.03.232
Google Scholar
[24]
Castro, S., Cerda, R., Betanco, N., Canelo, F., López, X., García, A., & Benavente, M. (2014). Estudio del equilibrio y cinética de adsorción de Cd(II), Ni(II) y Cr(VI) usando Quitosano y Quitosano modificado con cobre. Nexo Revista Científica, 26(2), 56–68.
DOI: 10.5377/nexo.v26i2.1285
Google Scholar
[25]
Muniyappan, R., Viswanathan, N., & Meenakshi, S. (s/f). Adsorption mechanism of hexavalent chromium removal using Amberlite IRA 743 resin. Vscht.cz. Recuperado el 2 de febrero de 2022, de http://iel.vscht.cz/articles/1803-4039-03-0025.pdf.
Google Scholar
[26]
Acosta Arguello, H. A., Barraza Yance, C. A., & Albis Arrieta, A. R. (2017). Adsorption of chromium (VI) using cassava peel (Manihot esculenta) as biosorbent: A kinetic study. Ingeniería y Desarrollo, 35(1), 58–76.
DOI: 10.14482/inde.35.1.8943
Google Scholar
[27]
A.E. Navarro, H. Musaev, and K. Serran, Adsorption Kinetics of Cobalt (II) Ions onto Alginate Beads from Aqueous Solutions,, J. Earth Sci. Clim. Change, vol. 5, n°. 223, p.2, (2014).
DOI: 10.4172/2157-7617.1000223
Google Scholar
[28]
B. Rehm, Alginate Production: Precursor Biosynthesis, Polymerization and Secretion,, in Alginates: Biology and Applications, Berlin, Deustchland: Springer, vol. 13, pp.55-71, (2009).
DOI: 10.1007/978-3-540-92679-5_2
Google Scholar
[29]
P. Kotrba, Microbial Biosorption of Metals. New York: Springer, (2011).
Google Scholar
[30]
S. Arris, M. B. Lehocine and A.H. Meniai, Sorption study of chromium sorption from wastewater using cereal by-products,, Int. J. Hydrogen Energy, to be published.
DOI: 10.1016/j.ijhydene.2014.09.147
Google Scholar