ZnO/g-C3N4/Fe3O4 Nanocomposites Embedded Sa-PVA as Photocatalyst Hydrogel Beads for Photodegradation

Article Preview

Abstract:

In this research, Fe3O4 NPs and g-C3N4 nanosheets were synthesized by co-precipitation and the thermal decomposition method, respectively. The ZnO/g-C3N4/Fe3O4 nanocomposites (ZGF) with the varying weight sight of Fe3O4 NPs were 0.5 (0.5ZGF), 1.25 (1.25ZGF), 2.5 (2.5ZGF), and 5.0 (5.0ZGF) wt%, which were synthesized by a facile method. Synthesized Fe3O4 NPs, g-C3N4 nanosheets, and ZGF nanocomposite were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM). Then ZGF nanocomposites were contained on sodium alginate-polyvinyl alcohol (SA-PVA) as hydrogel packing material. Kinetics of photocatalytic activity and adsorption were studied by first-order reaction, second-order reaction, the pseudo-first-order, the pseudo-second-order, Elovich, and Avrami models. Especially, the photocatalytic activity and adsorption process of ZGF-SA-PVA composite hydrogel beads have been represented via Methylene Blue removal. The photodegradation efficiency of 2.5ZGF-SA-PVA composite hydrogel beads under visible light irradiation is increased by over 2 times, to be much higher than that of SA-PVA hydrogel beads. The results show that the organic removal efficiency of the SA-PVA hydrogel bead can be effectively improved by the ZGF nanocomposite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-107

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Srikant, D. R. Clarke: J. Appl. Phys. Vol. 83(10) (1998), p.5447.

Google Scholar

[2] D. R. Paul, S. Gautam, P. Panchal, S. P. Nehra, P. Choudhary and A. Sharma: ACS Omega Vol. 5 (2020), p.3828.

Google Scholar

[3] R.C. Ngullie, S.O. Alaswad, K. Bhuvaneswari, P. Shanmugam, T. Pazhanivel and P. Arunachalam: Coatings Vol. 500(10) (2020).

DOI: 10.3390/coatings10050500

Google Scholar

[4] L. A. Luu Thi, M. M. Neto, T. P. Van, T. N. Ngo, T. M. Nguyen Thi, X. S. Nguyen and C. T. Nguyen: Adv. Mater. Sci. Eng. (2021), p.1 https://doi.org/10.1155/2021/6651633.

Google Scholar

[5] N. I. Md Rosli, S-M Lam, J-C Sin, I. Satoshi and A. R. Mohamed: J. Environ. Eng Vol. 144(2) (2018) p.04017091.

Google Scholar

[6] A. Balapure, M. M. Francis, H. Mude, P. A. Maroju, J. R. Dutta and R. Ganesan: Carbon Trends Vol 5 (2021) p.100118.

DOI: 10.1016/j.cartre.2021.100118

Google Scholar

[7] S. Vijayanath and K. Janaki: Inorg. Chem. Commun. Vol 120 (2020) p.108119.

Google Scholar

[8] R. Manimozhi, M. Mathankumar and A.P. Gnana Prakash: Optik Vol 229 (2021) p.165548.

Google Scholar

[9] Q. Liu, L. Zhou, L. Liu, J. Li, S. Wang, H. Znad and S. Liu: Compos. B. Eng Vol 200 (2020) p.108345.

Google Scholar

[10] M. Nadafan, M. Sabbaghan, P. Sofalgar and J. Z. Anvari: Opt Laser Technol Vol 131 (2020) p.106435.

Google Scholar

[11] L. Fernández, M. Gamallo, M.A. González-Gómez, C. Vázquez-Vázquez, J. Rivas, M. Pintado and M.T. Moreira: J. Environ. Manage Vol 237 (2019) p.595.

DOI: 10.1016/j.jenvman.2019.02.089

Google Scholar

[12] S. Sangjan and K. Ponsanti: Solid State Phenomena Vol 287 (2018) p.69.

Google Scholar

[13] T.Caykara and S. Demirci: J. Macromol. Sci. - Pure Appl. Chem. Vol 43 (2006) p.1113.

Google Scholar

[14] L. Esposito, A.I. Barbosa, T. Moniz, S.C. Lima, P. Costa, C. Celia and S. Reis: Pharmaceutics Vol 12 (2020) p.1149.

DOI: 10.3390/pharmaceutics12121149

Google Scholar

[15] A. M. Abdelghany, D. M. Ayaad and S. M. Mahmoud: Biointerface Res. Appl. Chem Vol 10(5) (2020) p.6236.

Google Scholar

[16] A. Chhatri, J. Bajpai, A.K. Bajpai, S.S. Sandhu, N. Jain and J. Biswas: Carbohydrate Polymers Vol 83 (2011) p.876.

DOI: 10.1016/j.carbpol.2010.08.077

Google Scholar

[17] B. Schartel, J. Wendling and J. H. Wendorff: Macromolecules Vol 29 (1996) 1521-1527.

Google Scholar

[18] J. Zanela, M. Casagrande, M. A. Shirai, V. A. de Lima and F. Yamashita: Polímeros, 26(3) (2016) 193-196.

Google Scholar

[19] S. Azizi, M. B. ahmad, M. Z. Hussein, N. A. Ibrahim and F. Namvar: Int J Nanomedicine Vol 9 (2014) p. (1909).

Google Scholar

[20] H. N. Bhatti, Y. Safa, S. M. Yakout, O. H. Shair, M. Iqbal and A. Nazir: Int. J. Biol. Macromol. Vol 150 (2020) p.861.

Google Scholar

[21] H. Isawi: Arab. J. Chem. Vol 13 (2020) p.5691.

Google Scholar

[22] Q. Chang, A. Ali, J. Su, Q.Wen, Y. Bai, Z. Gao and R. Xiong: Bioresour. Technol. Vol 331 (2021) p.125065.

Google Scholar

[23] J. Jang and D. S. Lee: Bioresource Technology Vol 218 (2016) p.294.

Google Scholar

[24] F. Ebrahimi, A. Sadeghizadeh, F. Neysan and M. Heydari: Heliyon Vol 5 (2019) p.02941.

Google Scholar

[25] S. Sangjan and W. Thongsamer: Key Eng. Mater Vol 858 (2020) p.109.

Google Scholar

[26] T. K. Hanh Ta, M.-T. Trinh, N. V. Long, T. T. My Nguyen, T. L. Thuong Nguyen, T. L. Thuoc, B. T. Phan, D. Mott, S. Maenosono, H. Tran-Van and V. H. Le: Colloids and Surfaces A: Physicochem. Eng. Aspects Vol 504 (2016) p.1.

DOI: 10.1016/j.colsurfa.2016.05.008

Google Scholar

[27] D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya and J. Y. Ying: J. AM. CHEM. SOC. Vol 127 (2005) p.4990.

Google Scholar

[28] X. Han, L. Gai, H. Jiang, L. Zhao, H. Liu and W. Zhang: Synthetic Metals Vol 171 (2013) 1–6.

Google Scholar

[29] S. Khodabakhshi, B. Karami, K. Eskandari, S. J. Hoseini and H. Nasrabadi: Arabian Journal of Chemistry (2014), http://dx.doi.org/10.1016/j.arabjc.2014.05.030.

Google Scholar

[30] J.Cao, C. Qin, Y. Wang, H. Zhang, G. Sun and Z. Zhang: Materials Vol 604 (10) (2017) p.1.

Google Scholar

[31] H. Dai, S. Zhang, G. Xu, Y. Peng, L. Gong, X. Li, Y. Li, Y. Lin and Guo-nan Chen: RSC Advances Vol 4 (2014) p.58226.

Google Scholar

[32] S. Kumar, A. Kumar, A. Bahuguna, V. Sharma and V. Krishnan: Beilstein J. Nanotechnol. Vol 8 (2017) p.1571.

Google Scholar

[33] S. Elavarasan, B. Baskar, C. Senthil, Piyali Bhanja, A. Bhaumik, P. Selvam, M. Sasidharan: RSC Adv. Vol 6 (2016) p.49376.

DOI: 10.1039/c6ra04170a

Google Scholar

[34] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, Jens-Oliver Mu¨ller, R. Schlo¨gl and Johan M. Carlsson: J. Mater. Chem. Vol 18 (2008) p.4893.

Google Scholar

[35] W. Li, Q. Chen and Q. Zhong: J Mater Sci Vol 55 (2020) p.10712.

Google Scholar

[36] M.A. Brza, S. B. Aziz, H. Anuar, F. Ali, E.M.A. Dannoun, S. R. Saeed, S. J. Mohammed and R.T. Abdulwahid: Optical Materials Vol 116 (2021) p.111062.

DOI: 10.1016/j.optmat.2021.111062

Google Scholar

[37] K. Omri, I. Najeh, R. Dhahri, J. El Ghoul and L. El Mir: Microelectron. Eng. Vol 128 (2014) p.53.

Google Scholar

[38] X. Cao, Y. Chen, S. Jiao, Z. Fang, M. Xu, X. Liu, L. Li, G. Pang and S. Feng: RSC (2013) p.1.

Google Scholar

[39] K. Ikeue, Y. Yamamoto and M. Suzuki: Ceramics Vol 3(3) (2020) p.1.

Google Scholar

[40] Z. Wu, X. Chen, X. Liu, X. Yang and Y. Yang: Nanoscale Res. Lett. Vol 14 (2019) p.147.

Google Scholar

[41] O. Długosz, K. Szostak, M. Krupiński and M. Banach: J Environ Sci Technol Vol 18(2021) p.561.

Google Scholar