[1]
The Ohio State University, Rajendra Singh, 614.292.9044.
Google Scholar
[2]
A. Ogawa, M. Niikura, C. Ouchi, K. Minikawa, and M. Yamada, Development and Applications of Titanium Alloy SP-700 with High Formability,, Journal of Testing and Evaluation 24, no. 2 (1996): 100-109.
Google Scholar
[3]
X. Li, Embedded Sensors in Layered Manufacturing,, Ph.D., Mechanical Engineering, Stanford University, (2001).
Google Scholar
[4]
Y. Li, W. Liu, Y. Feng, and H. Zhang, Ultrasonic embedding of nickel-coated fiber Bragg grating in aluminum and associated sensing characteristics,, Opt. Fiber Technol., vol. 18, no. 1, p.7–13, (2012).
DOI: 10.1016/j.yofte.2011.09.004
Google Scholar
[5]
S. Sandlin, T. Kosonen, A. Hokkanen, L. Heikinheimo, Use of brazing technique for manufacturing of high-temperature fiber optical temperature and displacement transducer, Materials Science and Technology, Vol. 23, Iss. 10, (2007).
DOI: 10.1179/174328407x226662
Google Scholar
[6]
W.M. Thomas et al. Friction Stir Welding,, International Patent Application No. PCT/GB92/02203.
Google Scholar
[7]
T. Nishihara, Development of Friction Stir Forming,, Mater. Sci. Forum, 426-432 (2003) 2971-2978.
DOI: 10.4028/www.scientific.net/msf.426-432.2971
Google Scholar
[8]
H. M. Tabatabaei et al., Friction Stir Forming for Mechanical Interlocking of Ultra-Thin Stainless Steel Strands and Aluminum Alloys,, Defect and Diffusion Forum, 382, pp.114-119, (2018).
DOI: 10.4028/www.scientific.net/ddf.382.114
Google Scholar
[9]
Hamed Mofidi Tabatabaei, Takahiro Ohashi, Tadashi Nishihara, Effect of Friction Stir Forming Parameters and Heat Treatment on Mechanical Properties of Fibre-Reinforced Aluminium Alloy, Key Engineering Materials, 918: 57-66, April (2022).
DOI: 10.4028/p-l892cv
Google Scholar
[10]
Hamed Mofidi Tabatabaei, Keita Kobayashi, Takahiro Ohashi, Tadashi Nishihara, Effect of Friction Stir Forming Process Parameters on Mechanical Interlock between A5083Alloy and Ultra-Thin Stainless Steel Strands, Key Engineering Materials 858:27-32, August (2020).
DOI: 10.4028/www.scientific.net/kem.858.27
Google Scholar
[11]
Hamed Mofidi Tabatabaei, Tadashi Nishihara, Friction Stir Forming for Mechanical Interlocking of Ultra-Thin Stainless Steel Strands and Aluminum Alloys, Defect and Diffusion Forum 382:114-119 January (2018).
DOI: 10.4028/www.scientific.net/ddf.382.114
Google Scholar
[12]
Hamed Mofidi Tabatabaei, Tadashi Nishihara, Effect of Friction Stir Welding on Mechanical properties of Zn-22Al Superplastic Alloy, International Journal of Engineering Research in Mechanical and Civil Engineering, 2(12) 63-68, December (2017).
DOI: 10.1007/s40194-016-0406-9
Google Scholar
[13]
Hamed Mofidi Tabatabaei, Tadashi Nishihara, Friction stir forming for mechanical interlocking of insulated copper wire and Zn-22Al superplastic alloy, Weld World, 61:47–55, December (2016).
DOI: 10.1007/s40194-016-0406-9
Google Scholar
[14]
Hamed Mofidi Tabatabaei, Takahiro Hara, Tadashi Nishihara, Production of a Superplastic Vibration-Damping Steel Sheet Composite Using Friction Stir Forming, Materials Science Forum 838-839:574-580, January (2016).
DOI: 10.4028/www.scientific.net/msf.838-839.574
Google Scholar
[15]
Takahiro Ohashi, Tadashi Nishihara, Hamed Mofidi Tabatabaei, Mechanical Joining Utilizing Friction Stir Forming, Materials Science Forum, 1016:1058-1064, January (2021).
DOI: 10.4028/www.scientific.net/msf.1016.1058
Google Scholar
[16]
Takahiro Ohashi, Hamed Mofidi Tabatabaei, Tadashi Nishihara, Cylindrical extrusions on A5083 aluminum alloy plate fabricated by friction stir forming, AIP Conference Proceedings, 1896 (1): 080002, October (2017).
DOI: 10.1063/1.5008082
Google Scholar