Spray Pyrolyzed Praseodymium Doped SnO2 Thin Film with Fast Response to LPG: Analysis Based on Microstructural Features

Article Preview

Abstract:

Praseodymium (Pr) doped (0.1 to 6 wt. %) nanostructured SnO2 thin films are prepared via nebulizer assisted spray deposition process at a deposition temperature of 320 °C. The analyses show that the films grow in (110), (301) and (310) preferred orientations. The fabricated sensing films are exposed to LPG at 500 ppm concentration and at different operating temperatures. In 500 ppm of LPG, at an operating temperature of 350 °C, a commendable sensor response of 99 % with fast response time of 9 s and recovery time of 11 s is shown by 1wt.% Pr doped film, which is appreciable compared to pristine SnO2 film. The sensor response reduces at lower operating temperatures. Microstructural investigations justify the gas sensing performance of 1 wt.% Pr doped SnO2 thin film. Raman and photoluminescence studies give an insight into oxygen vacancies and trapped states that have a crucial influence on gas sensing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-36

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Huang, and Q.Wan, Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors, 9 (2009) 9903-9924.

DOI: 10.3390/s91209903

Google Scholar

[2] Yulia Borchert, Patrick Sonstrom, Michaela Wilhelm, Holger Borchert, and Marcus Ba1umer, Nanostructured Praseodymium Oxide: Preparation, Structure, and Catalytic Properties, J. Phys. Chem. C, 112 (2008) 3054-3063.

DOI: 10.1021/jp0768524

Google Scholar

[3] M. A. Pinheiro, T. F. Pineiz, E. A. de Morais, L. V. Scalvi, M. J. Saeki, and A. A.Cavalheiro, Schottky emission in nanoscopically crystallized Ce-doped SnO2 thin films deposited by sol–gel-dip-coating. Thin Solid Films, 517 (2008) 976-981.

DOI: 10.1016/j.tsf.2008.07.001

Google Scholar

[4] B.Thomas, S. Deepa, & K. P. Kumari, Influence of surface defects and preferential orientation in nanostructured Ce-doped SnO2 thin films by nebulizer spray deposition for lowering the LPG sensing temperature to 150° C. Ionics, 25(2019) 809-826.

DOI: 10.1007/s11581-018-2732-y

Google Scholar

[5] W. Q. Li, S. Y. Ma, Y. F. Li, X. B. Li, C. Y. Wang, X. H. Yang, ... and X. L. Xu, Preparation of Pr-doped SnO2 hollow nanofibers by electrospinning method and their gas sensing properties. Journal of alloys and compounds, 605(2014) 80-88.

DOI: 10.1016/j.jallcom.2014.03.182

Google Scholar

[6] F. H. Aragón, I. Gonzalez, J. A. Coaquira, P. Hidalgo, H. F. Brito, J. D. Ardisson, ... & P. C. Morais, Structural and surface study of praseodymium-doped SnO2 nanoparticles prepared by the polymeric precursor method. The Journal of Physical Chemistry C, 119 (2015) 8711-8717.

DOI: 10.1021/acs.jpcc.5b00761

Google Scholar

[7] S. Deepa, K. PrasannaKumari, & B. Thomas, Influence of lattice strain and dislocations on the LPG sensing performance of praseodymium doped SnO2 nanostructured thin films. IJRASET, 5 (2017) 1054-1059.

DOI: 10.22214/ijraset.2017.9152

Google Scholar

[8] S. Deepa, B.Thomas, & K.PrasannaKumari, Influence of surface oxygen vacancies on the LPG sensing response and the gas selectivity of Nd-doped SnO2 nanoparticulate thin films. Journal of Materials Science: Materials in Electronics, 30 (2019) 16579-16595.

DOI: 10.1007/s10854-019-02037-x

Google Scholar

[9] Y. M. Chiang, D. P. Birnie, and W. D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering. J. Wiley, New York, (1997) 357-358.

Google Scholar

[10] Boben Thomas, Benoy Skariah, Spray deposited Mg-doped SnO2 thin film LPG sensor: XPS and EDX analysis in relation to deposition temperature and doping, 625 (2015) 231–240.

DOI: 10.1016/j.jallcom.2014.11.092

Google Scholar

[11] B. D. Cullity, Elements of X-Ray diffraction, Addision-Wesley, New York, (1978).

Google Scholar

[12] A. K. Singh, A. Janotti, M. Scheffler and C. G. Van de Walle, Sources of electrical conductivity in SnO2.Physical Review Letters, 101 (2008) 055502.

Google Scholar

[13] S., Deepa, K. P. Kumari, & B. Thomas, Contribution of oxygen-vacancy defect-types in enhanced CO2 sensing of nanoparticulate Zn-doped SnO2 films. Ceramics International, 43 (2017) 17128-17141.

DOI: 10.1016/j.ceramint.2017.09.134

Google Scholar

[14] S. Sagadevan, and C. Arunseshan, Dielectric properties of cadmium selenide (CdSe) nanoparticles synthesized by solvothermal method. Applied Nanoscience, 4 (2014)179-184.

DOI: 10.1007/s13204-012-0186-5

Google Scholar

[15] J. Liu, X. Huang, G. Ye, W. Liu, Z. Jiao, W. Chao, Z. Zhou and Z. Yu, H2S detection sensing characteristic of CuO/SnO2 sensor.Sensors, 3 (2003) 110-118.

DOI: 10.3390/s30500110

Google Scholar

[16] N. B. Sonawane, K. V. Gurav, R. R. Ahire, J. H. Kim and B. R. Sankapal, CdS nanowires with PbS nanoparticles surface coating as room temperature liquefied petroleum gas sensor. Sensors and Actuators A: Physical, 216 (2014) 78-83.

DOI: 10.1016/j.sna.2014.05.012

Google Scholar

[17] T. Nakahara, H. Koda; Chemical Sensor Technology, Vol. 3 (Kodansha and Elsevier, Amsterdam, (1992).

Google Scholar

[18] N. Barsan, U. W. Eimar, Conduction model of metal oxide gas sensors, Journal of Electro ceramics 7 (2001) 143-167.

Google Scholar

[19] R.K Mishra, P.P Sahay, Zn-doped and undoped SnO2 nano particles: A comparative structural, optical and LPG sensing properties study, Materials Research Bulletin 47 (2012) 4112-4118.

DOI: 10.1016/j.materresbull.2012.08.051

Google Scholar

[20] A. Srivastava, S. T. Lakshmikumar, A. K. Srivastava and K. Jain, Gas sensing properties of nanocrystalline SnO2 prepared in solvent media using a microwave assisted technique. Sensors and Actuators B: Chemical, 126 (2007) 583-587.

DOI: 10.1016/j.snb.2007.04.006

Google Scholar

[21] D. Haridas, A. Chowdhuri, K. Sreenivas, and V. Gupta, Enhanced room temperature response of SnO2 thin film sensor loaded with Pt catalyst clusters under UV radiation for LPG. Sensors and Actuators B: Chemical,153 (2011)152-157.

DOI: 10.1016/j.snb.2010.10.024

Google Scholar

[22] R.K. Mishra, P.P Sahay, Materials Research Bulletin 47 (2012) 4112-4118.

Google Scholar

[23] M. N. Rumyantseva, A. M. Gaskov, N. Rosman, T. Pagnier and J. R. Morante, Raman surface vibration modes in nanocrystalline SnO2: correlation with gas sensor performances. Chemistry of materials, 17 (2005) 893-901.

DOI: 10.1021/cm0490470

Google Scholar

[24] J.G. Traylor, H.G. Smith, R.M. Nicklow, and M.K. Wilkinson, Lattice dynamics of rutile. Physical Review B, 3 (1971) 3457-3472.

DOI: 10.1103/physrevb.3.3457

Google Scholar

[25] M. Batzill, and U. Diebold, The surface and materials science of tin oxide.Progress in surface science, 79 (2005) 47-154.

DOI: 10.1016/j.progsurf.2005.09.002

Google Scholar

[26] F. H. Aragón, J.A.H. Coaquira, P. Hidalgo, S.L.M., Brito, D. Gouvêa, and R. H. R. Castro, Structural and magnetic properties of pure and nickel doped SnO2 nanoparticles. Journal of Physics: Condensed Matter, 22 (2010) 496003.

DOI: 10.1088/0953-8984/22/49/496003

Google Scholar

[27] P. Thangadurai, A. C. Bose, S. Ramasamy, Kesavamoorthy, and T. R. Ravindran, High Pressure effects on electrical resistivity and dielectric properties of nanocrystalline SnO2.Journal of Physics and Chemistry of Solids, 66 (2005) 1621-1627.

DOI: 10.1016/j.jpcs.2005.05.079

Google Scholar

[28] W.Z. Wang, C.K. Xu, G.H. Wang, Y.K., Liu and C.L. Zheng, Preparation of Smooth Single Crystal Mn3O4 Nanowires. Advanced Materials, 14 (2002) 837-840.

DOI: 10.1002/1521-4095(20020605)14:11<837::aid-adma837>3.0.co;2-4

Google Scholar

[29] S. Luo, P. K. Chu, W. Liu, M. Zhang and C. Lin, Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambients. Applied Physics Letters, 88 (2006)183112.

DOI: 10.1063/1.2201617

Google Scholar

[30] Nguyen VnHieu, Le Thi Ngoc Loan, Nguyen DucKhoang, Nguyen Tuan Minh, Do Thanh Viet, Do Cong Minh, Tran Trung and Nguyen Duc Chien. A facile thermal evaporation route for large-area synthesis of tin oxide nano wires: Characterisations and their use for liquid petroleum gas sensor. Current Applied Physics, 10 (2010) 636-641.

DOI: 10.1016/j.cap.2009.08.008

Google Scholar

[31] A. Kar, M. A. Stroscio, M. Dutta, J. Kumari, and M. Meyyappan, Observation of ultraviolet emission and effect of surface states on the luminescence from tin oxide nanowires. Applied Physics Letters, 94 (2009) 101905.

DOI: 10.1063/1.3097011

Google Scholar

[32] H.T. Chen, S.J. Xiong, X.L. Wu, J. Zhu, J.C. Shen and P.K. Chu, Tin oxide nanoribbons with vacancy structures in luminescence-sensitive oxygen sensing. Nano letters, 9 (2009) 1926-1931.

DOI: 10.1021/nl900075f

Google Scholar