Solvent Effects on the UV-Visible Absorption and Emission of Tris[4-Diethylamino)Phenyl]amine

Article Preview

Abstract:

Tris [4-(diethylamino) phenyl] amine (TDAPA) is an organic molecular semiconductor generally used to enhance the charge transport of the devices for some time now. TDAPA is dissolved in various Polar and Non-polar solvents like DMF, Acetone, Acetonitrile, Ethanol, Methanol, Toluene and Chloroform. Absorption spectrum of solution is recorded using UV-Vis spectroscopy and absorption peak for different solvents were observed in UV and Near-UV region. PL study and Pl Excitation study is also carried out for these solvents. Results for absorption and photoluminescence show some interesting phenomenon of Stokes’ shift. The colour coordinates for respective emission are represented by CIE 1931. The study is successfully carried out for better understanding of effect of these solvents on the optical properties of TDAPA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-46

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Kellermann, D. Taroata, A. Maltenberger, D. Hartmann, C.J. Brabec, G. Schmid, Low-cost copper complexes as p-dopants in solution processable hole transport layers, Appl. Phys. Lett. 107 (2015) 103305. https://doi.org/10.1063/1.4930237.

DOI: 10.1063/1.4930237

Google Scholar

[2] F. So, J. Kido, P. Burrows, Organic Light-Emitting Devices for Solid-State Lighting, MRS Bull. 33 (2008) 663–669. https://doi.org/10.1557/MRS2008.137.

DOI: 10.1557/mrs2008.137

Google Scholar

[3] Z. Zhang, M. Liao, H. Lou, Y. Hu, X. Sun, H. Peng, Conjugated Polymers for Flexible Energy Harvesting and Storage, Adv. Mater. 30 (2018) 1704261. https://doi.org/10.1002/ADMA.201704261.

DOI: 10.1002/adma.201704261

Google Scholar

[4] B. Geffroy, P. le Roy, C. Prat, Organic light-emitting diode (OLED) technology: materials, devices and display technologies, Polym. Int. 55 (2006) 572–582. https://doi.org/10.1002/PI. (1974).

DOI: 10.1002/pi.1974

Google Scholar

[5] J. Locklin, D. Li, S.C.B. Mannsfeld, E.J. Borkent, H. Meng, R. Advincula, Z. Bao, Organic Thin Film Transistors Based on Cyclohexyl-Substituted Organic Semiconductors, Chem. Mater. 17 (2005) 3366–3374. https://doi.org/10.1021/CM047851G.

DOI: 10.1021/cm047851g

Google Scholar

[6] Naraso, J.I. Nishida, D. Kumaki, S. Tokito, Y. Yamashita, High performance n- and p-type field-effect transistors based on tetrathiafulvalene derivatives, J. Am. Chem. Soc. 128 (2006) 9598–9599. https://doi.org/10.1021/JA0630083.

DOI: 10.1021/ja0630083

Google Scholar

[7] S. Ando, R. Murakami, J.I. Nishida, H. Tada, Y. Inoue, S. Tokito, Y. Yamashita, n-type organic field-effect transistors with very high electron mobility based on thiazole oligomers with trifluoromethylphenyl groups, J. Am. Chem. Soc. 127 (2005) 14996–14997. https://doi.org/10.1021/JA055686F/SUPPL_FILE/JA055686FSI20050922_011725.PDF.

DOI: 10.1021/ja055686f

Google Scholar

[8] C.A. Di, G. Yu, Y. Liu, X. Xu, D. Wei, Y. Song, Y. Sun, Y. Wang, D. Zhu, J. Liu, X. Liu, D. Wu, High-performance low-cost organic field-effect transistors with chemically modified bottom electrodes, J. Am. Chem. Soc. 128 (2006) 16418–16419. https://doi.org/10.1021/JA066092V.

DOI: 10.1021/ja066092v

Google Scholar

[9] C.A. Di, G. Yu, Y. Liu, D. Zhu, High-Performance Organic Field-Effect Transistors:  Molecular Design, Device Fabrication, and Physical Properties, J. Phys. Chem. B. 111 (2007) 14083–14096. https://doi.org/10.1021/JP071753B.

DOI: 10.1021/jp071753b

Google Scholar

[10] L. Torsi, A. Dodabalapur, Organic thin-film transistors as plastic analytical sensors, Anal. Chem. 77 (2005). https://doi.org/10.1021/AC053475N.

DOI: 10.1021/ac053475n

Google Scholar

[11] Z.T. Zhu, J.T. Mason, R. Dieckmann, G.G. Malliaras, Humidity sensors based on pentacene thin-film transistors, Appl. Phys. Lett. 81 (2002) 4643. https://doi.org/10.1063/1.1527233.

DOI: 10.1063/1.1527233

Google Scholar

[12] J.A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V.R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic, Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 4835–4840. https://doi.org/10.1073/PNAS.091588098.

DOI: 10.1073/pnas.091588098

Google Scholar

[13] G.H. Gelinck, H.E.A. Huitema, E. Van Veenendaal, E. Cantatore, L. Schrijnemakers, J.B.P.H. Van Der Putten, T.C.T. Geuns, M. Beenhakkers, J.B. Giesbers, B.H. Huisman, E.J. Meijer, E.M. Benito, F.J. Touwslager, A.W. Marsman, B.J.E. Van Rens, D.M. De Leeuw, Flexible active-matrix displays and shift registers based on solution-processed organic transistors, Nat. Mater. 3 (2004) 106–110. https://doi.org/10.1038/NMAT1061.

DOI: 10.1038/nmat1061

Google Scholar

[14] M.M. Ling, Z. Bao, Thin Film Deposition, Patterning, and Printing in Organic Thin Film Transistors, Chem. Mater. 16 (2004) 4824–4840. https://doi.org/10.1021/CM0496117.

DOI: 10.1021/cm0496117

Google Scholar

[15] Y. Don Park, J.A. Lim, H.S. Lee, K. Cho, Interface engineering in organic transistors, Mater. Today. 10 (2007) 46–54. https://doi.org/10.1016/S1369-7021(07)70019-6.

DOI: 10.1016/s1369-7021(07)70019-6

Google Scholar

[16] H. Sirringhaus, Device Physics of Solution-Processed Organic Field-Effect Transistors, Adv. Mater. 17 (2005) 2411–2425. https://doi.org/10.1002/ADMA.200501152.

DOI: 10.1002/adma.200501152

Google Scholar

[17] K. Walzer, B. Männig, M. Pfeiffer, K. Leo, Highly Efficient Organic Devices Based on Electrically Doped Transport Layers, Chem. Rev. 107 (2007) 1233–1271. https://doi.org/10.1021/CR050156N.

DOI: 10.1021/cr050156n

Google Scholar

[18] Y. Shirota, Organic materials for electronic and optoelectronic devices, J. Mater. Chem. 10 (2000) 1–25. https://doi.org/10.1039/A908130E.

Google Scholar

[19] E. Tanış, E. Babur Sas, B. Gündüz, M. Kurt, Required theoretical and experimental physical characteristics of tris[4-(diethylamino)phenyl] amine organic material, J. Mater. Sci. Mater. Electron. 29 (2018) 16111–16119. https://doi.org/10.1007/S10854-018-9700-1.

DOI: 10.1007/s10854-018-9700-1

Google Scholar

[20] T. Ueno, T. Nagano, Fluorescent probes for sensing and imaging., Nat. Methods. 8 (2011) 642–645. https://doi.org/10.1038/nmeth.1663.

DOI: 10.1038/nmeth.1663

Google Scholar

[21] M.S.T. Gonçalves, Fluorescent Labeling of Biomolecules with Organic Probes, Chem. Rev. 109 (2009) 190–212. https://doi.org/10.1021/cr0783840.

DOI: 10.1021/cr0783840

Google Scholar

[22] L.D. Lavis, R.T. Raines, Bright Ideas for Chemical Biology, ACS Chem. Biol. 3 (2008) 142–155. https://doi.org/10.1021/cb700248m.

DOI: 10.1021/cb700248m

Google Scholar

[23] L.D. Lavis, R.T. Raines, Bright Building Blocks for Chemical Biology, ACS Chem. Biol. 9 (2014) 855–866. https://doi.org/10.1021/cb500078u.

DOI: 10.1021/cb500078u

Google Scholar

[24] L.M. Wysocki, L.D. Lavis, Advances in the chemistry of small molecule fluorescent probes., Curr. Opin. Chem. Biol. 15 (2011) 752–759. https://doi.org/10.1016/j.cbpa.2011.10.013.

DOI: 10.1016/j.cbpa.2011.10.013

Google Scholar

[25] K.J. de Almeida, T.C. Ramalho, Z. Rinkevicius, O. Vahtras, H. Agren, A. Cesar, Theoretical study of specific solvent effects on the optical and magnetic properties of copper(II) acetylacetonate., J. Phys. Chem. A. 115 (2011) 1331–1339. https://doi.org/10.1021/ jp109826p.

DOI: 10.1021/jp109826p

Google Scholar

[26] Y. Gülseven Sıdır, I. Sıdır, E. Taşal, E. Ermiş, Studies on the electronic absorption spectra of some monoazo derivatives., Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 78 (2011) 640–647. https://doi.org/10.1016/j.saa.2010.11.040.

DOI: 10.1016/j.saa.2010.11.040

Google Scholar

[27] D. Kosenkov, L. V Slipchenko, Solvent effects on the electronic transitions of p-nitroaniline: a QM/EFP study., J. Phys. Chem. A. 115 (2011) 392–401. https://doi.org/10.1021/ jp110026c.

DOI: 10.1021/jp110026c

Google Scholar

[28] O.A. Adegoke, O.S. Idowu, Solvatochromic behaviours and structure–spectra relationships of 4-carboxyl-2,6-dinitrophenylazohydroxynaphthalenes, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 75 (2010) 719–727. https://doi.org/https://doi.org/10.1016/j.saa. 2009.11.045.

DOI: 10.1016/j.saa.2009.11.045

Google Scholar

[29] B. Gündüz, Effects of molarity and solvents on the optical properties of the solutions of tris[4-(5-dicyanomethylidenemethyl-2-thienyl)phenyl]amine (TDCV-TPA) and structural properties of its film, Opt. Mater. (Amst). 36 (2013) 425–436. https://doi.org/10.1016/J.OPTMAT.2013.10.005.

DOI: 10.1016/j.optmat.2013.10.005

Google Scholar

[30] N. Pandey, M.S. Mehata, S. Pant, N. Tewari, Structural, Electronic and NLO Properties of 6-aminoquinoline: A DFT/TD-DFT Study, J. Fluoresc. 31 (2021) 1719–1729. https://doi.org/10.1007/s10895-021-02788-z.

DOI: 10.1007/s10895-021-02788-z

Google Scholar

[31] U. Subuddhi, S. Haldar, S. Sankararaman, A. Mishra, Photophysical behaviour of 1-(4-N,N-dimethylaminophenylethynl)pyrene (DMAPEPy) in homogeneous media, Photochem. Photobiol. Sci. 5 (2006) 459–466. https://doi.org/10.1039/b600009f.

DOI: 10.1039/b600009f

Google Scholar

[32] P. Horváth, P. Šebej, T. Šolomek, P. Klán, Small-Molecule Fluorophores with Large Stokes Shifts: 9-Iminopyronin Analogues as Clickable Tags, J. Org. Chem. 80 (2015) 1299–1311. https://doi.org/10.1021/jo502213t.

DOI: 10.1021/jo502213t

Google Scholar

[33] M.H.W. Stopel, C. Blum, V. Subramaniam, Excitation Spectra and Stokes Shift Measurements of Single Organic Dyes at Room Temperature, J. Phys. Chem. Lett. 5 (2014) 3259–3264. https://doi.org/10.1021/jz501536a.

DOI: 10.1021/jz501536a

Google Scholar