Analysis of the Influence of Build Plate Pre-Treatment and Process Parameters on the Bonding of Additively Manufactured Parts of TiAl6V4 to the Build Plate

Article Preview

Abstract:

In this paper, the influence of the surface roughness of build plates as well as the process parameters laser power, scan speed and exposure curing time on the bonding of additively manufactured components made of TiAl6V4 to the build plates is analyzed. These analyses are carried out with build plates made of Titanium Grade 2 and AlMgSi0.5. The analyses show that higher surface roughness leads to lower bending strength and thus poorer bonding of components on the build plate. In addition, it is shown that the bending strength normalized to the bonding surface decreases at high laser power, especially at high scanning speeds. Furthermore, multiple exposure results in lower flexural strength.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-58

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Wohlers, R.I. Campbell, O. Diegel, N. Mostow, J. Kowen: Wohlers Report 2021: 3D Printing and Additive Manufacturing State of the Industry, Wohlers Associates, Fort Collins, Colo., (2021).

Google Scholar

[2] E. Witt, C. Anton: Additive Fertigung: Entwicklungen, Möglichkeiten und Herausforderungen: Stellungnahme, Halle (Saale), (2020).

Google Scholar

[3] A. Weckenmann, G. Akkasoglu, T. Werner: Quality management—history and trends. In: The TQM Journal; ISSN: 1754-2731. Vol. 27 No. 3, p.281–293. https://doi.org/10.1108/TQM-11-2013-0125.

DOI: 10.1108/tqm-11-2013-0125

Google Scholar

[4] R.H. Hayes, S.C. Wheelwright: Restoring our competitive edge: Competing through manufacturing, Wiley, New York, N.Y., (1984).

Google Scholar

[5] H.J. Fahrenwaldt, V. Schuler: Praxiswissen Schweißtechnik: Werkstoffe, Prozesse, Fertigung, 3rd ed., Vieweg + Teubner, Wiesbaden, (2009).

DOI: 10.1007/978-3-658-03141-1

Google Scholar

[6] C. Pohle: Schweißen von Werkstoffkombinationen: Metallkundliche und fertigungstechnische Grundlagen sowie Ausführungsbeispiele, Verl. für Schweißen und Verwandte Verfahren DVS-Verl., Düsseldorf, (1999).

DOI: 10.1002/stab.200002010

Google Scholar

[7] S. Katayama (Ed.): Handbook of laser welding technologies, Woodhead Publ, Oxford, (2013).

Google Scholar

[8] Yaqoob Mohsin Baqer, S. Ramesh, F. Yusof, S. Manladan: Challenges and advances in laser welding of dissimilar light alloys: Al/Mg, Al/Ti, and Mg/Ti alloys, (2018).

DOI: 10.1007/s00170-017-1565-6

Google Scholar

[9] J.-F. Nie: Physical Metallurgy of Light Alloys, in: D.E. Laughlin, K. Hono (Eds.), Physical Metallurgy, 5th ed., Elsevier Science, Burlington, 2014, p.2009–2156.

DOI: 10.1016/b978-0-444-53770-6.00020-4

Google Scholar

[10] Y. Mae: What the Darken–Gurry Plot Means About the Solubility of Elements in Metals, Metall Mater Trans A 47 (2016) 6498–6506. https://doi.org/10.1007/s11661-016-3730-1.

DOI: 10.1007/s11661-016-3730-1

Google Scholar

[11] PubChem, Periodic Table of Elements, 2021, https://pubchem.ncbi.nlm.nih.gov/periodic-table/, accessed 23 January (2022).

Google Scholar

[12] K.A. Gschneidner, M. Verkade: Electronic and crystal structures, size (ECS2) model for predicting binary solid solutions, Progress in Materials Science 49 (2004) 411–428. https://doi.org/10.1016/S0079-6425(03)00026-4.

DOI: 10.1016/s0079-6425(03)00026-4

Google Scholar

[13] MatWeb: Material Property Data of Aluminum, Al, 2022, http://www.matweb.com/search/ datasheet.aspx?bassnum=AMEAL00&ckck=1, accessed 23 January (2022).

Google Scholar

[14] MatWeb: Material Property Data of Titanium, Ti, 2022, http://www.matweb.com/search/ DataSheet.aspx?MatGUID=66a15d609a3f4c829cb6ad08f0dafc01, accessed 23 January (2022).

Google Scholar

[15] J.-P. Kruth, P. Mercelis, J. van Vaerenbergh, L. Froyen, M. Rombouts: Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping Journal 11 (2005) 26–36. https://doi.org/10.1108/13552540510573365.

DOI: 10.1108/13552540510573365

Google Scholar

[16] V. Seyda: Werkstoff- und Prozessverhalten von Metallpulvern in der laseradditiven Fertigung. Dissertation.

DOI: 10.1007/978-3-662-58233-6_7

Google Scholar

[17] Umberto Scipioni Bertoli, Alexandra Wolfer, M. Matthews, J. Delplanque, J. Schoenung: On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting, (2017).

DOI: 10.1016/j.matdes.2016.10.037

Google Scholar

[18] W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik: Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, Journal of Materials Processing Technology 214 (2014) 2915–2925. https://doi.org/10.1016/j.jmatprotec.2014.06.005.

DOI: 10.1016/j.jmatprotec.2014.06.005

Google Scholar

[19] N.K. Tolochko, Y.V. Khlopkov, S.E. Mozzharov, M.B. Ignatiev, T. Laoui, V.I. Titov: Absorptance of powder materials suitable for laser sintering, Rapid Prototyping Journal 6 (2000) 155–161. https://doi.org/10.1108/13552540010337029.

DOI: 10.1108/13552540010337029

Google Scholar

[20] A. Schaub, B. Ahuja, M. Karg, M. Schmidt, M. Merklein: Fabrication and Characterization of Laser Beam Melted Ti-6Al-4V Geometries on Sheet Metal, Proceedings / DDMC 2014, Fraunhofer Direct Digital Manufacturing Conference, March 12 - 13, 2014, Berlin (2014).

DOI: 10.1016/j.phpro.2014.08.102

Google Scholar

[21] H. Ali, H. Ghadbeigi, K. Mumtaz: Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V, Materials Science and Engineering: A 712 (2018) 175–187. https://doi.org/10.1016/j.msea.2017.11.103.

DOI: 10.1016/j.msea.2017.11.103

Google Scholar

[22] K. Osakada, M. Shiomi: Flexible manufacturing of metallic products by selective laser melting of powder, International Journal of Machine Tools and Manufacture 46 (2006) 1188–1193. https://doi.org/10.1016/j.ijmachtools.2006.01.024.

DOI: 10.1016/j.ijmachtools.2006.01.024

Google Scholar

[23] Y. Zhang, J. Zhou, D. Sun, X. Gu: Nd:YAG laser welding of dissimilar metals of titanium alloy to stainless steel without filler metal based on a hybrid connection mechanism, Journal of Materials Research and Technology 9 (2020) 1662–1672. https://doi.org/10.1016/j.jmrt.2019. 12.001.

DOI: 10.1016/j.jmrt.2019.12.001

Google Scholar

[24] E. Siebel, M. Gaier: Untersuchungen über den Einfluss der Oberflächenbeschaffenheit auf die Dauerschwingfestigkeit metallischer Bauteile, VDI-Zeitschrift (1956) 1715–1723.

Google Scholar

[25] M. Peters (Ed.): Titan und Titanlegierungen, 3rd ed., Wiley-VCH, Weinheim, (2002).

Google Scholar