Increased Reflection Loss of SrFe(11.9-x) In0.1Snx/2Znx/2O19 (x = 0.0; 0.10; 0.35 and 0.50): A Microwave Absorber Induced by Reduced Coercivity

Article Preview

Abstract:

In this study, an increase in the reflection loss (RL) value for SrFe(11.9-x)In0.1Snx/2Znx/2O19 samples (x = 0; 0.10; 0.35 and 0.50) is reported. The X-ray diffraction (XRD) pattern of all samples confirmed that the SrFe(11.9-x)In0.1Snx/2Znx/2O19 samples (x = 0, 0.10, 0.35, and 0.50) posses polycrystalline with single phase. We have demonstrated that co-substitution of Zn2+ and Sn4+ ions with a fraction of x = 0.10 reduced the coercivity of the pure nano strontium hexaferrite (SHF) from 346.80 kA/m to 50.34 kA/m. The substitution of Fe3+ ion by Sn2+ and Zn4+ affect the coercivity decreased significantly. Meanwhile, the saturation magnetization and remanence slightly decreases. Hence, the decreasing of coercivity cause the reflection loss (RL) increase from -16.43 dB to -25.62 dB. We believed the RL value can be increased efficiently by reducing the coercivity of the sample obtained by co-substitution of Zn2+ and Sn4+ ions to Fe3+ in the main phase of SrFe11.9In0.1O19.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-54

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. J. Went, G. W. Rathenau, E. W. Gorter, and G. W. Van Oosterhout, Hexagonal iron-oxide compounds as permanent-magnet Materials,, p.194–207, (1952).

DOI: 10.1103/physrev.86.424.2

Google Scholar

[2] S. K. Godara, M. Singh, V. Kaur, S. B. Narang, J. Ahmed, and A. K. Sood, Effect of calcium solubility on structural, microstructure and magnetic properties of SrFe12O19,, Phys. B Condens. Matter, vol. 628, no. September 2021, p.413560, 2022,.

DOI: 10.1016/j.physb.2021.413560

Google Scholar

[3] Y. H. Hou, X. Chen, X. L. Guo, W. Li, Y. L. Huang, and X. M. Tao, Effects of intrinsic defects and doping on SrFe12O19: A first-principles exploration of the structural, electronic and magnetic properties,, J. Magn. Magn. Mater., vol. 538, no. June, 2021,.

DOI: 10.1016/j.jmmm.2021.168257

Google Scholar

[4] R. C. Pullar, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics,, Prog. Mater. Sci., vol. 57, no. 7, p.1191–1334, 2012,.

DOI: 10.1016/j.pmatsci.2012.04.001

Google Scholar

[5] C. D. Mee and J. C. Jeschke, Single-domain properties in hexagonal ferrites,, J. Appl. Phys., vol. 34, no. 4, p.1271–1272, 1963,.

DOI: 10.1063/1.1729467

Google Scholar

[6] Y. C. Wong, J. Wang, and G. B. Teh, Structural and magnetic studies of SrFe12O19 by sol-gel method,, Procedia Eng., vol. 76, p.45–52, 2014,.

DOI: 10.1016/j.proeng.2013.09.246

Google Scholar

[7] V. A. Turchenko, A. Trukhanov, S. Trukhanov, and F. Damay, Magnetic and ferroelectric properties , crystal and magnetic structures of SrFe11.9In0.1O19,, (2020).

Google Scholar

[8] H. S. Cho and S. S. Kim, The effect of Zn and Ni substitution on magnetic and microwave absorbing properties of Co 2 W hexagonal ferrites,, Ceram. Int., vol. 45, no. 7, p.9406–9409, 2019,.

DOI: 10.1016/j.ceramint.2018.08.178

Google Scholar

[9] A. Baniasadi, A. Ghasemi, A. Nemati, M. Azami Ghadikolaei, and E. Paimozd, Effect of Ti-Zn substitution on structural, magnetic and microwave absorption characteristics of strontium hexaferrite,, J. Alloys Compd., vol. 583, p.325–328, 2014,.

DOI: 10.1016/j.jallcom.2013.08.188

Google Scholar

[10] N. Yasmin et al., Structural and magnetic studies of Ce-Mn doped M-type SrFe12O19 hexagonal ferrites by sol-gel auto-combustion method,, J. Magn. Magn. Mater., vol. 473, no. October 2018, p.464–469, 2019,.

DOI: 10.1016/j.jmmm.2018.10.076

Google Scholar

[11] E. Handoko et al., Microwave absorbing studies of magnetic materials for X-band frequencies,, 2017 Int. Conf. Broadband Commun. Wirel. Sensors Powering, BCWSP 2017, vol. 2018-Janua, p.1–4, 2018,.

DOI: 10.1109/bcwsp.2017.8272575

Google Scholar

[12] J. Deng et al., Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations,, J. Colloid Interface Sci., vol. 509, p.406–413, 2018,.

DOI: 10.1016/j.jcis.2017.09.029

Google Scholar

[13] R. S. Alam, M. Moradi, M. Rostami, H. Nikmanesh, R. Moayedi, and Y. Bai, Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method,, J. Magn. Magn. Mater., vol. 381, p.1–9, 2015,.

DOI: 10.1016/j.jmmm.2014.12.059

Google Scholar

[14] M. A. Almessiere, Y. Slimani, and A. Baykal, Structural and magnetic properties of Ce-doped strontium hexaferrite,, Ceram. Int., vol. 44, no. 8, p.9000–9008, 2018,.

DOI: 10.1016/j.ceramint.2018.02.101

Google Scholar

[15] M. Junaid, M. A. Khan, M. N. Akhtar, A. Hussain, and M. F. Warsi, Impact of indium substitution on dielectric and magnetic properties of Cu 0.5 Ni 0.5 Fe 2-x O 4 ferrite materials,, Ceram. Int., vol. 45, no. 10, p.13431–13437, 2019,.

DOI: 10.1016/j.ceramint.2019.04.042

Google Scholar