The Effect of Annealing Temperature on the Structural and Magnetic Properties of Lanthanum Doped Cobalt Ferrite with the Bengawan Solo River Fine Sediment as the Source of Fe3+

Article Preview

Abstract:

The effect of annealing temperature on the structural and magnetic properties of a rare earth (La3+) doped cobalt ferrite with fine sediment from the Bengawan Solo River as the source of Fe3+ has been studied. Co-presipitation method is use for preparation nanoparticles whole this experiment. In order to modified the physical properties, the annealing treatment of 2000C, 3000C, and 4000C are performed. The obtained nanoparticles are characterized their structural properties by using X-ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Then, magnetic properties evaluated by using Vibrating Sample Magnetometer (VSM). XRD results have shown that there is an increase in crystallite size with an increase in the given annealing temperature from 24.56 nm to 27.83 nm. The increase in crystallite size can be attributed to the increase in the internal energy of the crystal structure which promotes atomic diffusion. Meanwhile, there is a decrease in the value of the lattice parameter with an increase in the given annealing temperature. The decrease in lattice parameters with increasing crystallite size is generally due to the lattice parameters reaching a minimum energy with increasing crystallite size. The formation of La3+-O2- for the incorporation of rare earth ions into the lattice requires high energy. The FTIR results show an absorption that appears at the peak around ~580 cm-1. This indicates that the La3+ cation has successfully replaced the original structure of cobalt ferrite. The VSM results show that there is an increase in the value of Hc with an increase in the annealing temperature given from 100 Oe to 160 Oe. This is supported by the increase of anisotropy constant and increasing temperature annealing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-20

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Qin, Y. He, P. Xu, D. Huang, Z. Wang, H. Wang, … C. Wang, Advances in Colloid and Interface Science, 294, 102486 (2021).

Google Scholar

[2] M. Kamran, & M. Anis-ur-Rehman, Journal of Alloys and Compounds, 822, 153583 (2020).

DOI: 10.1016/j.jallcom.2019.153583

Google Scholar

[3] A. A. Kadam, S. S. Shinde, S. P. Yadav, P. S. Patil, & K. Y. Rajpure, Journal of Magnetism and Magnetic Materials, 329, 59–64 (2013).

DOI: 10.1016/j.jmmm.2012.10.008

Google Scholar

[4] C. Aziz, & B. Azhdar, Journal of Magnetism and Magnetic Materials, 542, 168577 (2022).

Google Scholar

[5] A. K. Giri, E. M. Kirkpatrick, P. Moongkhamklang, S. A. Majetich, & V. G. Harris, Applied Physics Letters, 80(13), 2341–2343 (2002).

DOI: 10.1063/1.1464661

Google Scholar

[6] S. Amiri, & H. Shokrollahi, Materials Science and Engineering: C, 33(1), 1–8 (2013).

Google Scholar

[7] M. I. A. A. Maksoud, G. S. El-Sayyad, A. H. Ashour, A. I. El-Batal, M. A. Elsayed, M. Gobara, … M. M. El-Okr, Microbial Pathogenesis, 127, 144–158 (2019).

DOI: 10.1016/j.micpath.2018.11.045

Google Scholar

[8] A. Miri, M. Sarani, A. Najafidoust, M. Mehrabani, F. A. Zadeh, & R. S. Varma, Photocatalytic performance and cytotoxic activity of green-synthesized cobalt ferrite nanoparticles. Materials Research Bulletin, 149, 111706 (2022).

DOI: 10.1016/j.materresbull.2021.111706

Google Scholar

[9] B. Purnama, R. Arilasita, N. Rikamukti, Utari, S. Budiawanti, Suharno, … K. Matsuyama, Nano-Structures & Nano-Objects, 30, 100862 (2022).

DOI: 10.1016/j.nanoso.2022.100862

Google Scholar

[10] S. Swathi, R. Yuvakkumar, P. S. Kumar, G. Ravi, & D. Velauthapillai, Chemosphere, 281, 130903 (2021).

DOI: 10.1016/j.chemosphere.2021.130903

Google Scholar

[11] K. C. Das, B. Das, & S. S. Dhar, Water, Air, & Soil Pollution, 231 (2020).

Google Scholar

[12] F. Moradnia, S. Taghavi Fardood, A. Ramazani, & V. K. Gupta, Journal of Photochemistry and Photobiology A: Chemistry, 392, 112433 (2020).

DOI: 10.1016/j.jphotochem.2020.112433

Google Scholar

[13] M. Sundararajan, L. John Kennedy, P. Nithya, J. Judith Vijaya, & M. Bououdina, Journal of Physics and Chemistry of Solids, 108, 61–75 (2017).

DOI: 10.1016/j.jpcs.2017.04.002

Google Scholar

[14] M. Madhukara Naik, H. S. Bhojya Naik, G. Nagaraju, M. Vinuth, K. Vinu, & R. Viswanath, Nano-Structures & Nano-Objects, 19, 100322 (2019).

DOI: 10.1016/j.nanoso.2019.100322

Google Scholar

[15] C. Joseph Prabagar, S. Anand, M. Asisi Janifer, S. Pauline, & P. A. S. Theoder, Materials Today: Proceedings, 47, 1999–2006 (2021).

DOI: 10.1016/j.matpr.2021.04.150

Google Scholar

[16] X. Wu, Z. Ding, N. Song, L. Li, & W. Wang, Ceramics International, 42(3), 4246–4255 (2016).

Google Scholar

[17] M. Dhiman, B. Chudasama, V. Kumar, K. B. Tikoo, & S. Singhal, Ceramics International, 45(3), 3698–3709 (2019).

Google Scholar

[18] G. Bulai, V. Trandafir, S. A. Irimiciuc, L. Ursu, C. Focsa, & S. Gurlui, Ceramics International, 45(16), 20165–20171 (2019).

DOI: 10.1016/j.ceramint.2019.06.284

Google Scholar

[19] S. B. Das, R. K. Singh, V. Kumar, N. Kumar, P. Singh, & N. Kumar Naik, Materials Science in Semiconductor Processing, 145, 106632 (2022).

DOI: 10.1016/j.mssp.2022.106632

Google Scholar

[20] A. T. Mubarok, H. Widiyandari, Utari, & B. Purnama, Key Engineering Materials, 855, 64–69 (2020).

Google Scholar

[21] N. P. Prasetya, B. Legowo, Utari, & B. Purnama, International Conference on Science and Applied Science (ICSAS2020) (2020).

DOI: 10.1063/5.0030383

Google Scholar

[22] B. Legowo, Darsono, Y. Bella, H. Purwanto, W. Suryanto, & B. Purnama, Journal of Physics: Conference Series, 1951(1), 012058 (2021).

DOI: 10.1088/1742-6596/1951/1/012058

Google Scholar

[23] R. Arilasita, Utari, & B. Purnama, Journal of the Korean Physical Society, 74(5), 498–501 (2019).

Google Scholar

[24] R. I. Setiyani, Utari, Y. Iriani, & B. Purnama, Key Engineering Materials, 855, 16–21 (2020).

Google Scholar

[25] D. E. Saputro, R. Arilasita, Utari, & B. Purnama, Journal of Magnetics, 26(1), 19–24 (2021).

Google Scholar

[26] S. F. Mansour, O. M. Hemeda, S. I. El-Dek, & B. I. Salem, Journal of Magnetism and Magnetic Materials, 420, 7–18 (2016).

DOI: 10.1016/j.jmmm.2016.06.082

Google Scholar

[27] K. L. Routray, S. Saha, & D. Behera, Applied Physics A, 125(5) (2019).

Google Scholar

[28] L. Ai, & J. Jiang, Current Applied Physics, 10(1), 284–288 (2010).

Google Scholar

[29] W. Ahmad Wani, S. Kundu, K. Ramaswamy, & H. Venkataraman, Materials Science and Engineering: B, 271, 115299 (2021).

Google Scholar

[30] B. Abraime, K. El Maalam, L. Fkhar, A. Mahmoud, F. Boschini, M. Ait Tamerd, … O. Mounkachi, Journal of Magnetism and Magnetic Materials, 500, 166416 (2020).

DOI: 10.1016/j.jmmm.2020.166416

Google Scholar

[31] A. Samavati, & A. F. Ismail, Particuology, 30, 158–163 (2017).

Google Scholar

[32] E. H. El-Ghazzawy, Journal of Magnetism and Magnetic Materials, 497, 166017 (2020).

Google Scholar

[33] W. E. Mahmoud, A. A. Al-Ghamdi, S. Al-Heniti, & S. Al-Ameer, Journal of Alloys and Compounds, 491(1-2), 742–746 (2010).

DOI: 10.1016/j.jallcom.2009.11.055

Google Scholar

[34] Nitika, A. Rana, V. Kumar, & A. M. Awasthi, Ceramics International, 47(14), 20669–20677 (2021).

DOI: 10.1016/j.ceramint.2021.04.077

Google Scholar

[35] L. Kumar, & M. Kar, Ceramics International, 38(6), 4771–4782 (2012).

Google Scholar

[36] O. M. Hemeda, M. A. Amer, S. Aboul-Enein, & M. A. Ahmed, Physica Status Solidi (a), 156(1), 29–38 (1996).

Google Scholar

[37] M. K. Hossain, M. F. Pervez, M. N. H. Mia, S. Tayyaba, M. J. Uddin, R. Ahamed, … F. Ahmed, Materials Science-Poland, 35(4), 868–877 (2017).

DOI: 10.1515/msp-2017-0082

Google Scholar

[38] D. K. Muthee, & B. F. Dejene, Heliyon, 7(6), e07269 (2021).

Google Scholar

[39] R. Kabilan, & M. Ashokkumar, Journal of Molecular Structure, 1249, 131536 (2022).

Google Scholar

[40] J. N. Pavan Kumar Chintala, S. Bharadwaj, M. Chaitanya Varma, & G. S. V. R. K. Choudary, Journal of Physics and Chemistry of Solids, 160, 110298 (2022).

DOI: 10.1016/j.jpcs.2021.110298

Google Scholar

[41] R. D. Waldron, Physical Review, 99(6), 1727–1735 (1955).

Google Scholar

[42] S. A. Saafan, T. M. Meaz, E. H. El-Ghazzawy, M. K. El Nimr, M. M. Ayad, & M. Bakr, Journal of Magnetism and Magnetic Materials, 322(16), 2369–2374 (2010).

DOI: 10.1016/j.jmmm.2010.02.039

Google Scholar

[43] H. M. Zaki, & H. A. Dawoud, Far-infrared spectra for copper–zinc mixed ferrites. Physica B: Condensed Matter, 405(21), 4476–4479 (2010).

DOI: 10.1016/j.physb.2010.08.018

Google Scholar

[44] T. Tatarchuk, N. Danyliuk, V. Kotsyubynsky, A. Shumskaya, E. Kaniukov, A. A. Ghfar, … A. Shyichuk, Chemosphere, 294, 133565 (2022).

DOI: 10.1016/j.chemosphere.2022.133565

Google Scholar

[45] P. A. Shaikh, R. C. Kambale, A. V. Rao, & Y. D. Kolekar, Journal of Alloys and Compounds, 492(1-2), 590–596 (2010).

Google Scholar

[46] M. Goodarz Naseri, E. B. Saion, H. Abbastabar Ahangar, A. H. Shaari, & M. Hashim, Journal of Nanomaterials, 2010, 1–8 (2010).

DOI: 10.1155/2010/907686

Google Scholar

[47] R. Sefatgol, & A. Gholizadeh, Physica B: Condensed Matter, 624, 413442 (2022).

Google Scholar

[48] S. Banerjee, P. Hajra, A. Datta, A. Bhaumik, M. R. Mada, S. Bandyopadhyay, & D. Chakravorty, Bulletin of Materials Science, 37(3), 497–504 (2014).

DOI: 10.1007/s12034-014-0701-2

Google Scholar

[49] M. Kishimoto, H. Latiff, E. Kita, & H. Yanagihara, Materials Transactions, 60(4), 485–489 (2019).

Google Scholar