Annealing Temperature Dependent of the Structural and Magnetic Properties in Hematite Prepared by Sol-Gel Method

Article Preview

Abstract:

The annealing temperature dependent on the structural and magnetic properties of hematite (α-Fe2O3) powders synthesized via the sol-gel method was studied. The sol-gel method is used to prepare nanoparticles for this experiment. The annealing treatment of 200°C, 400°C, 600°C, and 800°C has been carried out to modify the physical properties. The obtained nanoparticles are characterized by their structural properties using X-ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Then, magnetic properties were evaluated using Vibrating Sample Magnetometer (VSM). XRD results have shown an increase in crystallite size with an increase in annealing temperature from 35.10 nm to 60.17 nm. The increase in crystallite size can be attributed to the increase in the crystal structure’s internal energy, which promotes atomic diffusion. The FTIR results show an absorption that appears at the peak around ~530 cm-1. It indicates that the Fe3+ cation has successfully formed. The VSM results show an increase in the value of Hc with an increase in the annealing temperature from 117 Oe to 461.5 Oe. It is supported by the increase of anisotropy constant and increasing temperature annealing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Patra, S. K. Kundu, A. Bhaumik, and D. Kim, Morphology evolution of single-crystalline hematite nanocrystals: magnetically recoverable nanocatalysts for enhanced facet-driven photoredox activity, Nanoscale. 8 (2016) 365-377.

DOI: 10.1039/c5nr06509g

Google Scholar

[2] A. S. Teja and P. Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Progress in crystall growth and characterization of material. 55 (2009) 22-45.

DOI: 10.1016/j.pcrysgrow.2008.08.003

Google Scholar

[3] J. G. Catalano, Z. Zhang, P. Fenter, and M. J. Bedyzk, Inner-sphere adsorption geometry of Se (IV) at the hematite (100)–water interface, J. of Colloid Interface Sci. 297 (2006) 665-671.

DOI: 10.1016/j.jcis.2005.11.026

Google Scholar

[4] F. Davar, H. Hadadzadeh, and T. S. Alaedini, Single-phase hematite nanoparticles: non-alkoxide sol–gel based preparation, modification and characterization, Ceram. Int. 42 (2016) 19336-19342.

DOI: 10.1016/j.ceramint.2016.09.104

Google Scholar

[5] D. E. Fouad, C. Zhang, H. El-Didamony, L. Yingnan, T. D. Mekuria, and A. H. Shah, Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor, Result Phys. 12 (2019) 1253-1261.

DOI: 10.1016/j.rinp.2019.01.005

Google Scholar

[6] M. Tadic, D. Trpkov, L. Kopanja, S. Vojnovic, and M. Panjan, Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties, J. Alloys Compd. 792 (2019) 599-609.

DOI: 10.1016/j.jallcom.2019.03.414

Google Scholar

[7] R. Vinayagam, S. Pai, T. Varadavenkatesan, M. K. Narasimhan, S. Narayanasamy, and R. Selvaraj, Structural characterization of green synthesized α-Fe2O3 nanoparticles using the leaf extract of Spondias dulcis, Surf. Interfaces. 20 (2020) 100618.

DOI: 10.1016/j.surfin.2020.100618

Google Scholar

[8] W. Zhou, Y. Sun, Y. Han, P. Gao, and Y. Li, Recycling iron from oolitic hematite via microwave fluidization roasting and magnetic separation, Miner. Eng. 164 (2021) 106851.

DOI: 10.1016/j.mineng.2021.106851

Google Scholar

[9] E. Paulson, and M. Jothibas, Significance of Thermal Interfacing in Hematite (α-Fe2O3) Nanoparticles Synthesized by Sol-Gel Method and its Characteristics Properties, Surf. Interfaces, 26 (2021) 101432.

DOI: 10.1016/j.surfin.2021.101432

Google Scholar

[10] K. T. V. Rao, S. Souzanchi, Z. Yuan, and C. C. Xu, One-pot sol–gel synthesis of a phosphated TiO2 catalyst for conversion of monosaccharide, disaccharides, and polysaccharides to 5-hydroxymethylfurfural, New J. Chem. 43 (2019) 12483-12493.

DOI: 10.1039/c9nj01677e

Google Scholar

[11] N. A. Spaldin, Magnetic materials: fundamentals and applications, Cambridge University Press (2010).

Google Scholar

[12] R. C. Kambale, P. A. Shaikh, S. S. Kamble, and Y. D. Kolekar, Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite, J. Alloys Compd. 478 (2009) 599-603.

DOI: 10.1016/j.jallcom.2008.11.101

Google Scholar

[13] L. D. L. S. Valladares, A. B. Domínguez, L. L. Félix, J. B. Kargin, D. G. Mukhambetov, A.L. Kozlovskiy, and C. H. W. Barnes, Characterization and magnetic properties of hollow α-Fe2O3 microspheres obtained by sol gel and spray roasting methods, J. Sci.: Adv. Mater. Devices. 4 (2019) 483-491.

DOI: 10.1016/j.jsamd.2019.07.004

Google Scholar

[14] X. Zheng, Y. Jiao, F. Chai, F. Qu, A. Umar, and X. Wu, Template-free growth of well-crystalline α-Fe2O3 nanopeanuts with enhanced visible-light driven photocatalytic properties, J. Colloid and Interface Sci. 457 (2015) 345–352.

DOI: 10.1016/j.jcis.2015.07.023

Google Scholar

[15] P. Qiu, H. Yang, L. Yang, Q. Wang, and L. Ge, Solar water splitting with nanostructured hematite: The role of annealing-temperature, Electrochim. Acta. 266 (2018) 431-440.

DOI: 10.1016/j.electacta.2018.02.030

Google Scholar

[16] E. R. Kumar, R. Jayaprakash, and T. Prakash, The effect of annealing on phase evolution, microstructure and magnetic properties of Mn substituted CoFe2O4 nanoparticles, J. Magn. Magn. Mater. 358 (2014) 123-127.

DOI: 10.1016/j.jmmm.2014.01.056

Google Scholar

[17] R. Sefatgol and A. Gholizadeh, The effect of the annealing temperature on the microstructural, magnetic, and spin-dynamical properties of Mn–Mg–Cu–Zn ferrites, Physica B: Condens. Matter. 624 (2022) 413442.

DOI: 10.1016/j.physb.2021.413442

Google Scholar

[18] A. Saraswathy, S. S. Nazeer, M. Jeevan, N. Nimi, S. Arumugam, V. S. Harikrishnan, and R. S. Jayasree, Citrate coated iron oxide nanoparticles with enhanced relaxivity for in vivo magnetic resonance imaging of liver fibrosis, Colloids Surf. B: Biointerfaces. 117 (2014) 216-224.

DOI: 10.1016/j.colsurfb.2014.02.034

Google Scholar

[19] S. Srivastava, R. Awasthi, N. S. Gajbhiye, V. Agarwal, A. Singh, A. Yadav, and R. K. Gupta, Innovative synthesis of citrate-coated superparamagnetic Fe3O4 nanoparticles and its preliminary applications, J. Colloid and Interface Sci. 359 (2011) 104-111.

DOI: 10.1016/j.jcis.2011.03.059

Google Scholar

[20] M. Tadic, M. Panjan, B. V. Tadic, S. Krajl, and J. Lazovic, Magnetic properties of mesoporous hematite/alumina nanocomposite and evaluation for biomedical applications, Ceram. Int. 48 (2022) 10004-10014.

DOI: 10.1016/j.ceramint.2021.12.209

Google Scholar

[21] R. M. Cornell and U. Schwertmann, The iron oxides (2004).

Google Scholar

[22] A. G. Roca and J. F. Marco, Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles, J. Phys. Chem. C 111(2007) 18577-18584.

DOI: 10.1021/jp075133m

Google Scholar

[23] A. M. El Sayed, Influence of the preparative parameters on the microstructural, and some physical properties of hematite nanopowder, Mater. Res. Express. 5 (2018) 025025.

DOI: 10.1088/2053-1591/aaad36

Google Scholar

[24] S. Dutz, and R. Hergt, The role of interactions in systems of single domain ferrimagnetic iron oxide nanoparticles, J. Nano-Electron. Phys. 4 (2012) 02010.

Google Scholar

[25] Z. N. Kayani, S. Arshad, S. Riaz, and S. Naseem, Synthesis of iron oxide nanoparticles by sol–gel technique and their characterization, IEEE Trans. Magn. 50 (2014) 1-4.

DOI: 10.1109/tmag.2014.2313763

Google Scholar