The Ability of ZnFe2O4 Nanostructure as Electromagnetic Wave Absorber in Frequency Range 2-18 GHz

Article Preview

Abstract:

ZnFe2O4 nanomaterials were prepared using a solid-state reaction method using high energy milling (750 rpm) for 30 hours and calcined at 1000°C for 5 hours. The characterizations used include XRD, SEM, VSM, and VNA. The measurement results show that the sample has a single phase with a cubic structure. The surface morphology of heterogeneous samples with a particle size of 250-400 nm shows magnetic performance with Ms 2.38 emu/g and Hc 11.29 kOe. The sample also can absorb electromagnetic waves in the frequency range of 2-18 GHz with a minimum RL value of ~-18.79 dB at a frequency of 3.66 GHz, while RL ~-13.32 dB has a bandwidth of 0.9 GHz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-37

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhang, Y. et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam, Adv. Mater. 27 (2015) 2049–(2053).

DOI: 10.1002/adma.201405788

Google Scholar

[2] KK. Kefeni, B.B. Mamba, Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review, Sustainable Materials and Technologies 23 (2020) e00140.

DOI: 10.1016/j.susmat.2019.e00140

Google Scholar

[3] Sumithra Y Srinivasan, Kishore M Paknikar,  Dhananjay Bodas,Virendra Gajbhiye, Applications of cobalt ferrite nanoparticles in biomedical nanotechnology, Nanomedicine Vol 3 No. 10 (2018) 1221-1238.

DOI: 10.2217/nnm-2017-0379

Google Scholar

[4] K. K. Kefeni, T.A.M. Msagati, T. T. I. Nkambule, B. B. Mamba, Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity, Materials Science and Engineering: C 107 (2020) 110314.

DOI: 10.1016/j.msec.2019.110314

Google Scholar

[5] AH Ashour, Ahmed I. El-Batal, M.I.A. Abdel Maksoud, Gharieb S. El-Sayyad, Sh. Labib, E. Abdeltwab, M.M. El-Okr, Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique, Particuology, 40 (2018) 141-151.

DOI: 10.1016/j.partic.2017.12.001

Google Scholar

[6] R. Haghniaz, A. Rabbani, F,Vajhadin, et al., Anti‐bacterial and wound healing‐promoting effects of zinc ferrite nanoparticles,  J Nanobiotechnol 19 (2021) 38.

DOI: 10.1186/s12951-021-00776-w

Google Scholar

[7] Changye Mang, Zhijun Ma, Jun Luo, Mingjun Rao, Xin Zhang, Zhiwei Peng, Electromagnetic wave absorption properties of cobalt-zinc ferrite nanoparticles doped with rare earth elements, Journal of Rare Earths 39 11 (2021) 1415-1426.

DOI: 10.1016/j.jre.2020.08.011

Google Scholar

[8] M. Derakhshani, E. Taheri-Nassaj, M. Jazirehpour, S.M. Masoudpanah, Enhanced electromagnetic wave absorption performance of Ni–Zn ferrite through the added structural macroporosity, Journal of Materials Research and Technology, 16 (2022) 700-714.

DOI: 10.1016/j.jmrt.2021.12.026

Google Scholar

[9] Zhenfeng Liu, Honglong Xing, Ye Liu, Huan Wang, Hanxiao Jia, Xiaoli Ji, Hydrothermally synthesized Zn ferrite/multi-walled carbon nanotubes composite with enhanced electromagnetic-wave absorption performance, Journal of Alloys and Compounds, 731 (2018) 745-752.

DOI: 10.1016/j.jallcom.2017.09.317

Google Scholar

[10] Poorbafrani A, Kiani E., Enhanced microwave absorption properties in cobalt-zinc ferrite based nanocomposites., Journal of Magnetism and Magnetic Materials, 416 (2016) 10-24.

DOI: 10.1016/j.jmmm.2016.04.046

Google Scholar

[11] Stergiou C. Magnetic, dielectric and microwave absorption properties of rare earth doped Ni-Co and Ni-Co-Zn spinel ferrites., Journal of Magnetism and Magnetic Materials, 426 (2017) 629-35.

DOI: 10.1016/j.jmmm.2016.11.001

Google Scholar

[12] Radon A, Hawełek Ł, Łukowiec D, Kubacki J, Włodarczyk P. Dielectric and electromagnetic interference shielding properties of high entropy (Zn,Fe,Ni,Mg,Cd)Fe2O4 ferrite. Sci Rep, 9 (2019) 20078.

DOI: 10.1038/s41598-019-56586-6

Google Scholar

[13] Bi-yu Chen, Ding Chen, Zhi-tao Kang, Ying-zhe Zhang, Preparation and microwave properties of Ni-Co nanoferrites, Journal of Alloyas and Compounds 618 (2015) 222 – 226.

DOI: 10.1016/j.jallcom.2014.08.195

Google Scholar

[14] Yunasfi, Mashadi, Mulyawan A, Adi WA. Synthesis of NiLaxFe(2−x)O4 System as Microwave Absorber Materials by Milling Technique. Journal of Electronic Materials 49 (2020) 7272-7278.

DOI: 10.1007/s11664-020-08489-w

Google Scholar

[15] W. A. Adi, Yunasfi, Mashadi, D. S. Winatapura, A. Mulyawan, Y. Sarwanto, Y. E. Gunanto, Y. Taryana, Book: Electromagnetic Fields and Waves, Metamaterial: Smart magnetic Material for Microwave Absorbing Material, pp.158-176, Publisher IntechOpen, UK, (2019).

DOI: 10.5772/intechopen.84471

Google Scholar

[16] Fashen Li, Haibo Wang, Li Wang, Jianbo Wang, Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method, Journal of Magnetism and Magnetic Materials 309 (2007) 295–299.

DOI: 10.1016/j.jmmm.2006.07.012

Google Scholar

[17] R. Sagayaraj, S. Aravazhi, P. Praveen, et al., Structural, morphological and magnetic characters of PVP coated ZnFe2O4 nanoparticles, J Mater Sci: Mater Electron. 29 (2018) 2151–2158.

DOI: 10.1007/s10854-017-8127-4

Google Scholar

[18] A.Manohar, C. Krishnamoorthi, K.C.B. Naidu, et al., Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method, Appl. Phys. A 125 (2019) 477.

DOI: 10.1007/s00339-019-2760-0

Google Scholar

[19] C. Gestarila, D. Puryanti, Sintesis Nanopartikel Zink Ferit (ZnFe2O4) dengan Metode Kopresipitasi dan Karakterisasi Struktur Kristalnya, Jurnal Fisika Unand (JFU). Vol 9 No 3 (2020) 299-303.

DOI: 10.25077/jfu.9.3.299-303.2020

Google Scholar

[20] R. Rajini, A. Christy Ferdinand, Structural, morphological and magnetic properties of (c-ZnFe2O4 and t-CuFe2O4) ferrite nanoparticle synthesized by reactive ball milling, Chemical Data Collections 38 (2022) 100825.

DOI: 10.1016/j.cdc.2021.100825

Google Scholar

[21] D D Andhare, et al., Structural and Chemical Properties of ZnFe2O4 Nanoparticles Synthesized by Chemical Co-Precipitation Technique, J. Phys.: Conf. Ser. 1644 (2020) 012014.

DOI: 10.1088/1742-6596/1644/1/012014

Google Scholar

[22] F. Fajaroh, et al., Synthesis of ZnFe2O4 Nanoparticles with PEG 6000 and Their Potential Application for Adsorbent, IOP Conf. Ser.: Mater. Sci. Eng. 515 (2019) 012049.

DOI: 10.1088/1757-899x/515/1/012049

Google Scholar

[23] RC de Oliveira, R.A.P. Ribeiro, G.H. Cruvinel, R. A. C. Amoresi, M.H. Carvalho, A. J. A de Oliveira, M.C. de Oliveira, S.R. de Lazaro, L.F. da Silva, A.C. Catto, A.Z. Simões, J.R. Sambrano, E. Longo, Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe2O4 Nanoparticles: Theoretical and Experimental Insights, ACS Appl. Mater. Interfaces 13 (2021) 4605−4617.

DOI: 10.1021/acsami.0c15681

Google Scholar

[24] J. Kurian, M. J. Mathew, Structural, optical, and magnetic studies of CuFe2O4, MgFe2O4 and ZnFe2O4 nanoparticles prepared by hydrothermal/solvothermal method, Journal of Magnetism and Magnetic Materials. 451 (2018) 121-130.

DOI: 10.1016/j.jmmm.2017.10.124

Google Scholar

[25] R.S. Yadav, Anju, T. Jamatia, I. Kuˇritka, J.Vilˇcáková, D. Škoda, P.Urbánek, M. Machovský, M. Masaˇr, M. Urbánek, et al., Superparamagnetic ZnFe2O4 Nanoparticles-Reduced Graphene Oxide-Polyurethane Resin Based Nanocomposites for Electromagnetic Interference Shielding Application, Nanomaterials 11 (2021) 1112.

DOI: 10.3390/nano11051112

Google Scholar

[26] A. Manikandan, J. Judith Vijaya, M. Sundararajan, C. Meganathan, L. John Kennedy, M. Bououdina, Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method, Superlattices and Microstructures. 64 (2013) 118–131.

DOI: 10.1016/j.spmi.2013.09.021

Google Scholar

[27] T.Simbolon, T.Sembiring, M. Hamid, D. Hutajulu, M. Rianna, A. Sebayang, A. Tetuko, E. Setiadi, M. Ginting, P. Sebayang, Preparation and characterization of ZnFe2O4 on the microstructures and magnetic properties, Journal of Aceh Physics Society. 10 (2021) 32-35.

DOI: 10.24815/jacps.v10i2.18710

Google Scholar

[28] S.A. Oliver, V.G. Harris, H.H. Hamdeh, J.C. Ho, Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders, Appl. Phys. Lett. 76 (2000) 2761.

DOI: 10.1063/1.126467

Google Scholar

[29] N. Ponpandian, A. Narayanasamy, C.N. Chinnasamy, N. Sivakumar, J.-M. Greneche, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, Néel temperature enhancement in nanostructured nickel zinc ferrite, Appl. Phys. Lett. 86 (2005) 192510.

DOI: 10.1063/1.1925755

Google Scholar

[30] S.A. Oliver, H.H. Hamdeh, J.C. Ho, Localized spin canting in partially inverted ZnFe2O4 fine powders, Phys. Rev. B 60 (1999) 3400.

Google Scholar

[31] C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault, J.-M. Greneche, Magnetic properties of nanostructured ferrimagnetic zinc ferrite, J. Phys.: Condens. Matter 12 (2000) 7795.

DOI: 10.1088/0953-8984/12/35/314

Google Scholar

[32] H.H. Hamdeh, J.C. Ho, S.A. Oliver, R.J. Willey, G. Oliveri, G. Busca, Magnetic properties of partially-inverted zinc ferrite aerogel powders, J. Appl. Phys. 81 (1997) 1851.

DOI: 10.1063/1.364068

Google Scholar

[33] H.H. Hamdeh, J.C. Ho, S.A. Oliver, R.J. Willey, J. Kramer, Y.Y. Chen, S.H. Lin, Y.D. Yao, M. Daturi, G. Busca, Ferrimagnetic zinc ferrite fine powders, IEEE Trans. Magn. 31 (1995) 3808.

DOI: 10.1109/20.489779

Google Scholar

[34] Kumar, S., Supriya, S., Pandey, R., Pradhan, L.K., Singh, R.K., Kar, M.: Effect of lattice strain on structural and magnetic properties of Ca substituted barium hexaferrite, J. Magn. Magn. Mater, 458 (2018) 30–38.

DOI: 10.1016/j.jmmm.2018.02.093

Google Scholar

[35] C. Sun, C. Cheng, M. Sun, Z.Zhang, Facile synthesis and microwave absorbing properties of LiFeO2/ZnFe2O4 composite, Journal of Magnetism and Magnetic Materials 482 (2019) 79-83.

Google Scholar