The Ability of NiFe2O4 Samples to Reduce Electromagnetic Wave Pollution in the Frequency Range of 2-18 Ghz

Article Preview

Abstract:

Rapid technological developments have the impact of increasing electromagnetic wave pollution. To reduce this pollution, nickel ferrite (NiFe2O4) nanoparticles are made by using mechanical alloying method with high energy milling in a wet state. X-ray diffractometer was used to characterize the crystal structure and the formed phase; scanning electron microscopy was used to characterize surface morphology; and for magnetization, a vibrating sample of magnetometer was used. Meanwhile, the capability to absorb electromagnetic waves in the 2-18 GHz interval was using a vector network analyzer. NiFe2O4 nanoparticles have a cubic structure, space group Fd-3m, and a crystal size of 127 nm. The shape of the particles resembles a block and is spherical, measuring about 250-300 nm. At room temperature, NiFe2O4 nanoparticles are soft magnetic materials with a magnetic saturation (Ms) of 41.61 emu/g and a coercivity (Hc) of 0.24 kOe. The ability to absorb microwaves, is expressed by reflection loss (RL) ~ -25.81 dB at a frequency (f) 5.16 GHz with a bandwidth (BW) 1.62 GHz, while RL ~ - 18.64 dB at f = 10, 98 GHz with BW = 1.42 GHz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-46

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Huang, M. Chen, A. Xie, Y. Wang, and X. Xu, Recent Advances in Design and Fabrication of Nanocomposites for Electromagnetic Wave Shielding and Absorbing. Materials,14, 4148 (2021). https:// doi.org/10.3390/ma14154148.

DOI: 10.3390/ma14154148

Google Scholar

[2] S. Solgi, M. S. S. Dorraji, S. F. Hosseini, M. H. Rasoulifard, I. Hajimiri, and A. A.-Ghadim, Improvement of microwave absorption properties of polyester coatings using NiFe2O4, X-doped g-C3N4 (X = S, P, and O), and MTiO3 (M = Fe, Mg, and Zn) nanofillers. Sci Rep 11, 19339 (2021). https://doi.org/10.1038/s41598-021-98666-6.

DOI: 10.1038/s41598-021-98666-6

Google Scholar

[3] D. Mandal, A. Gorai, and K. Mandal, Electromagnetic wave trapping in NiFe2O4 nano-hollow spheres: An efficient microwave absorber, Journal of Magnetism and Magnetic Materials, Volume 485 (2019) 43-48. https://doi.org/10.1016/j.jmmm.2019.04.033.

DOI: 10.1016/j.jmmm.2019.04.033

Google Scholar

[4] J. Xie, H. Jiang, J. Li, F. Huang, A. Zaman, X. Chen, D. Gao, Y. Guo, D. Hui, and Z. Zhou, Improved impedance matching by multi- componential metal-hybridized rGO toward high performance of microwave absorption, Nanotechnology Reviews, 10 (2021) 1-9. https://doi.org/10.1515/ntrev-2021-0001.

DOI: 10.1515/ntrev-2021-0001

Google Scholar

[5] I. R.Ibrahim, K. A. Matori, I. Ismail, Z. Awang, S.N. A. Rusly, R. Nazlan, F. M.Idris, M. M. M. Zulkimi, N. H. Abdullah, M. S. Musta, F. N. Shafieee, and M. Ertugrul, A Study on Microwave Absorption Properties of Carbon Black and Ni0.6Zn0.4Fe2O4 Nanocomposites by Tuning the Matching-Absorbing Layer Structures, Scientific Reports, 10 3135 (2020). https://doi.org/10.1038/s41598-020-60107-1.

DOI: 10.1038/s41598-020-60107-1

Google Scholar

[6] S. Prabhu, M. Geerthana, S. Sohila, G. M. Bhalerao, S. Harish, M. Navaneethan, Y. Hayakawa, and R. Ramesh, Preparation of Cr3+-Substituted NiFe2O4 Nanoparticles and Its Microwave Absorption Properties. J Supercond Nov Magn 32 (2019) 1423-1429. https://doi.org/10.1007/s10948-018-4835-0.

DOI: 10.1007/s10948-018-4835-0

Google Scholar

[7] F. Wang, X. Wang, J. Zhu, H. Yang, X. Kong, and X. Liu, Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties, Scientific Reports, 6:37892 (2016).

DOI: 10.1038/srep37892

Google Scholar

[8] Y. Qiao, J. Xiao, Q. Jia, L. Lu, and H. Fan, Preparation and microwave absorption properties of ZnFe2O4/polyaniline/ graphene oxide composite, Results in Physics, Volume 13, 102221 (2019). https://doi.org/10.1016/j.rinp.2019.102221.

DOI: 10.1016/j.rinp.2019.102221

Google Scholar

[9] E. Sukirman, Y. Sarwanto, S. Ahda, Y. Taryana, and S. Purwanto, Detailed Multiband Electromagnetic Wave Absorption Study on Nanocrystalline (1-x)NiFe2O4/(x)BaTiO3 Composites. Newest Updates in Physical Science Research Vol. 2 (2021) 35-48. https://doi.org/10.9734/bpi/nupsr/v2/7215D.

DOI: 10.9734/bpi/nupsr/v2/7215d

Google Scholar

[10] P. Yin, L. Zhang, J. Wang, X. Feng, L. Zhao, H. Rao, Y. Wang, and J. Dai, Preparation of SiO2-MnFe2O4 Composites via One-Pot Hydrothermal Synthesis Method and Microwave Absorption Investigation in S-Band, Molecules, 24, 2605 (2019).

DOI: 10.3390/molecules24142605

Google Scholar

[11] T. Dippong, E. A. Levei, I. G. Deac, E. Neag, and O. Cadar, Influence of Cu2+, Ni2+, and Zn2+ Ions Doping on the Structure, Morphology, and Magnetic Properties of Co-Ferrite Embedded in SiO2 Matrix Obtained by an Innovative Sol-Gel Route, Nanomaterials, 10, 580 (2020).

DOI: 10.3390/nano10030580

Google Scholar

[12] Y. E. Gunanto, M. P. Izaak, S. S. Silaban, and W. A. Adi, Effect of milling time on microwave absorption ability on barium-hexaferrite nanoparticles, J. Phys.: Conf. Ser. 1011 012058 (2018). http://dx.doi.org/10.1088/1742-6596/1011/1/012058.

DOI: 10.1088/1742-6596/1011/1/012058

Google Scholar

[13] R. S. Yadav, I. Kurǐtka, J. Vilcakova, M. Machovsky, D. Skoda, P. Urbańek, M. Masar,̌ M. Jurcǎ, M. Urbańek, L. Kalina, and J. Havlica, NiFe2O4 Nanoparticles Synthesized by Dextrin from Corn-Mediated Sol−Gel Combustion Method and Its Polypropylene Nanocomposites Engineered with Reduced Graphene Oxide for the Reduction of Electromagnetic Pollution, ACS Omega, 4 (2019) 22069-22081.

DOI: 10.1021/acsomega.9b03191

Google Scholar

[14] Y. E. Gunanto, H. Sitompul, M. P. Izaak, E. Jobiliong, Y. Sarwanto, and W. A. Adi, The effect of Zn-dopant on the anisotropy constant and reflection loss of the Ba0.6Sr0.4Fe10-xZnxMnTiO19 (x = 0.1, 0.3, and 0.5), Journal of Magnetism and Magnetic Materials 553, 169172 (2022). https://doi.org/10.1016/j.jmmm.2022.169172.

DOI: 10.1016/j.jmmm.2022.169172

Google Scholar

[15] Henrik Lyder Andersen, Matilde Saura-Múzquiz, Cecilia Granados-Miralles, Emmanuel Can´evet, Nina Lock, Mogens Christensen, Crystalline and magnetic structure-property relationship in spinel ferrite nanoparticles, Nanoscale 10 (31) (2018) 14902–14914, https://doi.org/10.1039/C8NR01534A.

DOI: 10.1039/c8nr01534a

Google Scholar

[16] G. Dixit, J.P. Singh, C.L. Chen, C.L. Dong, R.C. Srivastava, H.M. Agrawal, W. F. Pong, K. Asokan, Study of structural, morphological and electrical properties of Ce doped NiFe2O4 nanoparticles and their electronic structure investigation, J. Alloy. Compd. 581 (2013) 178–185, https://doi.org/10.1016/j.jallcom.2013.07.047.

DOI: 10.1016/j.jallcom.2013.07.047

Google Scholar

[17] L.Y. Matzui, A.V. Trukhanov, O.S. Yakovenko, L.L. Vovchenko, V.V. Zagorodnii, V. V. Oliynyk, M.O. Borovoy, E.L. Trukhanova, K.A. Astapovich, D.V. Karpinsky, S. V. Trukhanov, Functional magnetic composites based on hexaferrites: correlation of the composition, magnetic and high-frequency properties, Nanomaterials 9 (2019) 1–17, https://doi.org/10.3390/nano9121720.

DOI: 10.3390/nano9121720

Google Scholar

[18] K. Ugendar, V. Hari Babu, V. Raghavendra Reddy, G. Markaneyulu, Cationic ordering and magnetic properties of rare-earth doped NiFe2O4 probed by Mossbauer and X-ray spectroscopies, J. Magn. Magn. Mater. 484 (2019) 291–297, https://doi.org/10.1016/j.jmmm.2019.04.044.

DOI: 10.1016/j.jmmm.2019.04.044

Google Scholar

[19] Yunasfi Yunasfi, Mashadi Mashadi, Ade Mulyawan, Wisnu Ari Adi, Synthesis of NiLaxFe(2–x)O4 system as microwave absorber materials by milling technique, J. Electron. Mater. 49 (12) (2020) 7272–7278, https://doi.org/10.1007/s11664-020-08489-w.

DOI: 10.1007/s11664-020-08489-w

Google Scholar

[20] Y. Slimani, B. Unal, M.A. Almessiere, A. Demir Korkmaz, Sagar E. Shirsath, Ghulam Yasin, A.V. Trukhanov, A. Baykal, Investigation of structural and physical properties of Eu3+ ions substituted Ni0.4Cu0.2Zn0.4Fe2O4 spinel ferrite nanoparticles prepared via sonochemical approach, Results Phys. 17 (2020) 103061, https://doi.org/10.1016/j.rinp.2020.103061.

DOI: 10.1016/j.rinp.2020.103061

Google Scholar

[21] M.K. Kokare, N.A. Jadhav, Y. Kumar, K.M. Jadhav, S.M. Rathod, Effect of Nd3+ doping on structural and magnetic properties of Ni0.5Co0.5Fe2O4 nanocrystalline ferrites synthesized by sol-gel auto combustion method, J. Alloy. Compd. 748 (2018) 1053–1061, https://doi.org/10.1016/j.jallcom.2018.03.168.

DOI: 10.1016/j.jallcom.2018.03.168

Google Scholar

[22] M.M.L. Sonia, S. Anand, V.M. Vinosel, M.A. Janifer, S. Pauline, A. Manikandan, Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2−xO4 ferrite nano-crystallites synthesized by sol-gel route, J. Magn. Magn. Mater. 466 (2018) 238–251, https://doi.org/10.1016/j.jmmm.2018.07.017.

DOI: 10.1016/j.jmmm.2018.07.017

Google Scholar

[23] L. Guo, Y. He, D. Chen, B. Du, W. Cao, Y. Lv, and Z. Ding, Hydrothermal Synthesis and Microwave Absorption Properties of Nickel Ferrite/Multiwalled Carbon Nanotubes Composites. Coatings,11 534 (2021). https://doi.org/ 10.3390/coatings11050534.

DOI: 10.3390/coatings11050534

Google Scholar

[24] Blesa M C, Amador U, Moran E, Menendez N, Tornero J D, Rodriguez-Carvajal J, Synthesis and characterization of nickel and magnesium ferrites obtained from alpha-NaFeO2 Locality: synthetic,, Solid State Ionics 63 (1993) 429-436.

DOI: 10.1016/0167-2738(93)90140-x

Google Scholar

[25] B. H. Toby, R. B. Von Dreele. GSAS II the genesis of an open-source all-purpose crystallography software package. J. Appl. Crystallogr. 46 (2013) 544–549.

DOI: 10.1107/s0021889813003531

Google Scholar

[26] V. K. Chakradhary, A. Ansaria, and M. J. Akhtara, Design, synthesis, and testing of high coercivity cobalt doped nickel ferrite nanoparticles for magnetic applications. J. Magn. Magn. Mater., 469 (2019) 674-680.

DOI: 10.1016/j.jmmm.2018.09.021

Google Scholar

[27] D. A. Vinnik, V. E. Zhivulin, D. P. Sherstyuk, A. Yu. Starikov, P. A. Zezyulina, S. A. Gudkova, D. A. Zherebtsov, K. N. Rozanov, S. V. Trukhanov, K. A. Astapovich, A. S. B. Sombra, D. Zhou, R. B. Jotania, C. Singh, and A. V. Trukhanov, Ni substitution effect on the structure, magnetization, resistivity and permeability of zinc ferrites, J. Mater. Chem. C, 9, 5425 (2021).

DOI: 10.1039/d0tc05692h

Google Scholar

[28] Y. E. Gunanto, H. Sitompul, M. P. Izaak, Y. Sarwanto, and W. A. Adi, Microwave Absorbing Material of Ba0.95La0.05Fe12-2xZnxTixO19 (x = 0; 0.5; and 1.0) with Broadband Characteristic at X-band Frequency, J. Eng. Technol. Sci., Vol. 54, No. 2, 220222 (2022). https://doi.org/10.5614/j.eng.technol.sci.2022.54.2.2.

DOI: 10.5614/j.eng.technol.sci.2022.54.2.2

Google Scholar