[1]
X. Zhang, J. Shao, C. Yan, X. Wang, Y. Wang, Z. Lu,, High performance broadband self-driven photodetector based on MXene (Ti3C2Tx)/GaAs Schottky junction, Materials & Design, 207 (2021) 109850.
DOI: 10.1016/j.matdes.2021.109850
Google Scholar
[2]
M. Mikulics, S. Wu, M. Marso, R. Adam, A. Forster, A. v. d. Hart, Ultrafast and highly sensitive photodetectors with recessed electrodes fabricated on low-temperature-grown GaAs, IEEE Photonics Technology Letters, 18 (2006) 820-822.
DOI: 10.1109/lpt.2006.871696
Google Scholar
[3]
S. S. Kang, D.-M. Geum, K. Kwak, J.-H. Kang, C.-H. Shim, H. Hyun, InAs on GaAs Photodetectors Using Thin InAlAs Graded Buffers and Their Application to Exceeding Short-Wave Infrared Imaging at 300 K, Scientific Reports, 9 (2019) 12875.
DOI: 10.1038/s41598-019-49300-z
Google Scholar
[4]
R. Radzali, M. A. M. Azhar, A. Mahmood, F. Zulkifli, A. F. A. Rahim, and A. A. Bakar, Properties of Porous Silicon by Two-Step Alternating Current Photo-Assisted Electrochemical Etching (ACPEC) Technique under Different Applied Current Density for MSM Photodetector Device Application, ASM Science Journal, 14 (2021) 135-142.
DOI: 10.1063/1.4998357
Google Scholar
[5]
R. Radzali, N. Zainal, F. K. Yam, and Z. Hassan, Nanoporous InGaN of high In composition prepared by KOH electrochemical etching, Materials Science in Semiconductor Processing, vol. 16, no. 6, pp.2051-2057, (2013)
DOI: 10.1016/j.mssp.2013.07.035
Google Scholar
[6]
A. A. Darweesh, S. J. Bauman, D. A. French, A. Nusir, O. Manasreh, and J. B. Herzog, Current Density Contribution to Plasmonic Enhancement Effects in Metal–Semiconductor–Metal Photodetectors, Journal of Lightwave Technology, 36 (2018) 2430-2434.
DOI: 10.1109/jlt.2018.2811749
Google Scholar
[7]
G. Chen et al., Integration of high-speed GaAs metal-semiconductor-metal photodetectors by means of transfer printing for 850 nm wavelength photonic interposers, Optics Express, 26 (2018) 6351-6359.
DOI: 10.1364/oe.26.006351
Google Scholar
[8]
Z. Yu, S. J. Schablitsky, and S. Y. Chou, Nanoscale GaAs metal–semiconductor–metal photodetectors fabricated using nanoimprint lithography, Applied Physics Letters, 74 (2019) 2381-2383.
DOI: 10.1063/1.123858
Google Scholar
[9]
E. I. Monaico et al., Electrochemical nanostructuring of (111) oriented GaAs crystals: from porous structures to nanowires, Beilstein Journal of Nanotechnology, 11 (2020) 966-975.
DOI: 10.3762/bjnano.11.81
Google Scholar
[10]
M. I. Md Taib, N. Zainal, and Z. Hassan, Improvement of Porous GaAs (100) Structure through Electrochemical Etching Based on DMF Solution, Journal of Nanomaterials, l (2014) 294385.
DOI: 10.1155/2014/294385
Google Scholar
[11]
D. K. Shah, D. Kc, D. Parajuli, M. S. Akhtar, C. Y. Kim, and O. B. Yang, A computational study of carrier lifetime, doping concentration, and thickness of window layer for GaAs solar cell based on Al2O3 antireflection layer, Solar Energy, 234 (2022) 330-337
DOI: 10.1016/j.solener.2022.02.006
Google Scholar
[12]
A. Qodratnama, F. Khunjush, and M. Raji, A methodology for the SPICE-Compatible modelling of metal-semiconductor-metal photodetectors for nanophotonic interconnects application, Microelectronics Journal, 115 (2021) 105170
DOI: 10.1016/j.mejo.2021.105170
Google Scholar
[13]
A. Hernández, Y. Kudriavtsev, C. Salinas-Fuentes, C. Hernández-Gutierrez, and R. Asomoza, Optical properties of porous GaAs formed by low energy ion implantation, Vacuum, 171 (2020) 108976
DOI: 10.1016/j.vacuum.2019.108976
Google Scholar
[14]
A. I. Nusir, A. M. Hil, M. O. Manasreh, and a. J. B. Herzog, Near-infrared metal-semiconductor-metal photodetector based on semi-insulating GaAs and interdigital electrodes, Near-infrared metal-semiconductor-metal photodetector based on semi-insulating GaAs and interdigital electrodes, 3 (2015) 1
DOI: 10.1364/prj.3.000001
Google Scholar
[15]
X. Dai et al., GaAs/AlGaAs Nanowire Photodetector, Nano Letters, 14 (2015) 2688-2693
Google Scholar
[16]
F. K. Mohammed, K. P. Beh, A. Ramizy, N. M. Ahmed, F. K. Yam, and Z. Hassan, Improvement of Porous GaN-Based UV Photodetector with Graphene Cladding, Applied Sciences, 11 (2021) 22.
DOI: 10.3390/app112210833
Google Scholar