Correlation between Microstructure and Bending of FSW and TIG Welded Mg-Rich Aluminium Alloy Joints

Article Preview

Abstract:

This paper reports on the mechanical properties in relation to the microstructure of the Mg-rich aluminium alloy joints fabricated through friction stir welding (FSW) and tungsten inert gas (TIG) welding techniques. The microstructure, tensile, and bending tests were conducted on friction stir, and TIG welded joints. Most coarse grains (27.81mm) dominated the joint produced using the TIG welding technique, while the refined grains (11.26 mm) mostly dominated the joint made through the FSW technique. The ultimate tensile strength (UTS) of the joint fabricated using the FSW technique was higher (379 MPa) compared to the TIG-welded joint (260 MPa). However, the inverse behaviour was observed when looking at the tensile elongation of the very same joints. The bending results correlated with UTS results, and this phenomenon was attributed to the microstructural grain size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-21

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Cam G, Javaheri V, Heidarzadeh A. Advances in FSW and FSSW of dissimilar Al-alloy plates. J. Adh. Sci. Techn. In press (2022).

DOI: 10.1080/01694243.2022.2028073

Google Scholar

[2] N. Kashaev, V. Ventzke, G. Çam, Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications. J. Manuf. Proc. 36(2018) 571-600.

DOI: 10.1016/j.jmapro.2018.10.005

Google Scholar

[3] G. Cam, G. Ipekoglu, Recent developments in joining of aluminum alloys, Int. J. Adv. Manuf. Technol. 91(2017) 1851-1866.

DOI: 10.1007/s00170-016-9861-0

Google Scholar

[4] G. Cam, G. Ipekoglu, H.T. Serindag, Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints, Sci. Technol. Weld. Join. 19(2014) 715-720.

DOI: 10.1179/1362171814y.0000000247

Google Scholar

[5] G. Cam, Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM), Mat. Today: Proc. In Press, https://doi.org/.

DOI: 10.1016/j.matpr.2022.02.137

Google Scholar

[6] G. Cam, V. Ventzke, J.F. dos Santos, M. Kocak, G. Jennequin, P. Gonthier-Maurin, Characterisation of electron beam welded aluminium alloys, Sci. Technol. Weld. Join. 4(1999):317-323.

DOI: 10.1179/136217199101537941

Google Scholar

[7] G. Cam, M. Kocak. Microstructural and mechanical characterization of electron beam welded Al-alloy 7020, J. Mater. Sci. 42(2007) 7154-7161.

DOI: 10.1007/s10853-007-1604-z

Google Scholar

[8] G. Ipekoglu, G. Cam. Formation of weld defects in cold metal transfer arc welded 7075-T6 plates and its effect on joint performance, IOP Conf. Series: Mater. Sci. and Eng. 629(2019) 012007.

DOI: 10.1088/1757-899x/629/1/012007

Google Scholar

[9] H.R. Hazari, M. Balubai, D. Suresh Kumar, A.U. Haq, Experimental investigation of TIG welding on AA 6082 and AA 8011, Mater Today Proc. 19(2019) 818–822.

DOI: 10.1016/j.matpr.2019.08.137

Google Scholar

[10] R. Kumar, G. Kumar, A. Roy, R.S. Sinha, S.M.M. Hasnain, O. Prakash, A. Ahmad, A comparative analysis of friction stir and tungsten inert gas dissimilar AA5082-AA7075 butt welds, Mater. Sci. Energy Technol. 5(2022) 74–80.

DOI: 10.1016/j.mset.2021.12.002

Google Scholar

[11] A.C. Muñoz, G. Rückert, B. Huneau, X. Sauvage, S. Marya, Comparison of TIG welded and friction stir welded Al-4.5Mg-0.26Sc alloy, J. Mater. Process. Technol. 197(2008) 337–343.

DOI: 10.1016/j.jmatprotec.2007.06.035

Google Scholar

[12] Y. Deng, B. Peng, G. Xu, Q. Pan, Z. Yin, R. Ye, Y. Wang, L. Lu, Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al-Zn-Mg alloys, Mater. Sci. Eng. A 639(2015) 500–513.

DOI: 10.1016/j.msea.2015.05.052

Google Scholar

[13] S. Mabuwa, V. Msomi, The impact of submerged friction stir processing on the friction stir welded dissimilar joints The impact of submerged friction stir processing on the friction stir welded dissimilar joints, Mat. Res. Express 7(2020) 096513

DOI: 10.1088/2053-1591/abb6b6

Google Scholar

[14] V. Msomi, S. Mabuwa, Analysis of material positioning towards microstructure of the friction stir processed AA1050/AA6082 dissimilar joint, Adv. Ind. Manuf. Eng. 1(2020) 100002.

DOI: 10.1016/j.aime.2020.100002

Google Scholar

[15] V. Msomi, S. Mabuwa, Experimental investigation of bending and tensile strength of friction stir processed TIG-welded AA5083-H111 joint, Eng Res Express. 2(2020) 045005.

DOI: 10.1088/2631-8695/abbd8b

Google Scholar

[16] S. Mabuwa, V. Msomi, The effect of friction stir processing on the friction stir welded AA1050-H14 and AA6082-T6 joints, Mater. Today Proc. 26(2020) 193–199.

DOI: 10.1016/j.matpr.2019.10.039

Google Scholar

[17] S. Mabuwa, V. Msomi, Effect of Friction Stir Processing on Gas Tungsten Arc-Welded and Friction Stir-Welded 5083-H111 Aluminium Alloy Joints, 2019 Adv. Mater. Sci. Eng. 2019(2019) 3510236.

DOI: 10.1155/2019/3510236

Google Scholar

[18] V. Msomi, N. Mbana, S. Mabuwa, Microstructural analysis of the friction stir welded 1050-H14 and 5083-H111 aluminium alloys, Mat. Today: Proc. 26(2020) 189-193.

DOI: 10.1016/j.matpr.2019.10.038

Google Scholar

[19] A.K. Srivastava, N.K. Maurya, A.R. Dixit, S.P. Dwivedi, A. Saxena, Experimental investigations of A359/Si3N4 surface composite produced by multi-pass friction stir processing, Mater Chem Phys. 257(2021) 123717.

DOI: 10.1016/j.matchemphys.2020.123717

Google Scholar

[20] S. Mabuwa, V. Msomi, The effect of FSP conditions towards microstructure and mechanical properties of the AA6082/AA8011 TIG-welded joint, Mater. Res. Express. 8(2021) 066514.

DOI: 10.1088/2053-1591/ac0735

Google Scholar

[21] J. Shen, X. Chen, V. Hammond, L.J. Kecskes, S.N. Mathaudhu, K. Kondoh, Q. Wei, The effect of rolling on the microstructure and compression behavior of AA5083 subjected to large-scale ECAE, J. Alloys Compd. 695(2017) 3589–3597.

DOI: 10.1016/j.jallcom.2016.11.406

Google Scholar

[22] A. Kurt, I. Uygur, E. Cete, Surface modification of aluminium by friction stir processing, J. Mater. Process Technol. 211(2011) 313–327.

DOI: 10.1016/j.jmatprotec.2010.09.020

Google Scholar

[23] A.M. Takhakh, Formability of friction stir welded and processed AA 2024-O aluminum alloy sheets, Adv. Nat. Appl. Sci.10(2016) 85+

Google Scholar