Tangential Adhesive Strength of the Masonry with PET-Fibres Modified Mortar

Article Preview

Abstract:

The normal and tangential adhesive strength between bricks and mortar in bed joints is the main parameter that determines the performance of masonry under biaxial stress conditions. This research aims to determine the possibility of increasing the tangential adhesive strength (shear) of masonry by using mortars reinforced with PET fibres obtained from recycled plastic bottles. Shear tests are proposed on simplified brick masonry specimens made with mortars containing PET fibres in percentages of 0.5%, 1% and 1.5% of the mass of cement and sand. It has been determined that the addition of PET fibres in percentages no greater than 1% increases the tangential bond strength. The addition of 0.5% PET fibres increases the tangential adhesive strength by 37% and 1% PET by 60%, while the addition of 1.5% PET fibres decreases the studied strength by 22.86%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-54

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yardim and O. Lalaj, "Shear strengthening of unreinforced masonry wall with different fiber reinforced mortar jacketing," Constr. Build. Mater., vol. 102, p.149–154, 2016.

DOI: 10.1016/j.conbuildmat.2015.10.095

Google Scholar

[2] O. V. Kabantsev, "Modeling Nonlinear Deformation and Destruction Masonry under Biaxial Stresses Part 1 – Masonry as Simulation Object," Appl. Mech. Mater., vol. 725–726, p.681–696, 2015.

DOI: 10.4028/www.scientific.net/amm.725-726.681

Google Scholar

[3] O. Kabantsev and D. Cajamarca-Zuniga, "Improvement of the brick to increase the tangential bond strength of the masonry," Mater. Today Proc., no. (iCATCHCOME 2023), p.8, 2023.

DOI: 10.1016/j.matpr.2023.05.640

Google Scholar

[4] S. Sahu, P. R. R. Teja, P. Sarkar, and R. Davis, "Effect of Brick Prewetting on Masonry Bond Strength," J. Mater. Civ. Eng., vol. 31, no. 10, p.1–9, 2019.

DOI: 10.1061/(asce)mt.1943-5533.0002866

Google Scholar

[5] S. Anandan and M. Alsubih, "Mechanical strength characterization of plastic fiber reinforced cement concrete composites," Appl. Sci., vol. 11, no. 2, p.1–21, 2021.

DOI: 10.3390/app11020852

Google Scholar

[6] M. R. Latifi, Ö. Biricik, and A. Mardani Aghabaglou, "Effect of the addition of polypropylene fiber on concrete properties," J. Adhes. Sci. Technol., vol. 36, no. 4, p.345–369, 2022.

DOI: 10.1080/01694243.2021.1922221

Google Scholar

[7] P. N. Gajjar, E. Gabrielli, D. C. Martin-alarcon, P. B. Lourenço, and C. Colla, "An experimental and numerical contribution for understanding the in-situ shear behaviour of unreinforced masonry," J. Build. Eng., vol. 44, no. 103389, p.15, 2021.

DOI: 10.1016/j.jobe.2021.103389

Google Scholar

[8] A. M. Halabian, L. Mirshahzadeh, and H. Hashemol-Hosseini, "Non-linear behavior of unreinforced masonry walls with different Iranian traditional brick-work settings," Eng. Fail. Anal., vol. 44, p.46–65, 2014.

DOI: 10.1016/j.engfailanal.2014.04.018

Google Scholar

[9] P. W. Chen and D. D. L. Chung, "A comparative study of concretes reinforced with carbon, polyethylene, and steel fibers and their improvement by latex addition," ACI Mater. J., vol. 93, no. 2, p.129–133, 1996.

DOI: 10.14359/1411

Google Scholar

[10] K. Goda, P. Kloukinas, I. Kafodya, I. Ngoma, V. Novelli, and J. Macdonald, "Strength of materials and masonry structures in malawi," Adv. Eng. Mater. Struct. Syst. Innov. Mech. Appl. - Proc. 7th Int. Conf. Struct. Eng. Mech. Comput. 2019, no. June 2020, p.1697–1702, 2019.

DOI: 10.1201/9780429426506-293

Google Scholar

[11] A. Costigan, S. Pavía, and O. Kinnane, "An experimental evaluation of prediction models for the mechanical behavior of unreinforced, lime-mortar masonry under compression," J. Build. Eng., vol. 4, p.283–294, 2015.

DOI: 10.1016/j.jobe.2015.10.001

Google Scholar

[12] N. Almesfer, D. Y. Dizhur, R. Lumantarna, and J. M. Ingham, "Material properties of existing unreinforced clay brick masonry buildings in New Zealand," Bull. New Zeal. Soc. Earthq. Eng., vol. 47, no. 2, p.75–96, 2014.

DOI: 10.5459/bnzsee.47.2.75-96

Google Scholar

[13] S. Petry and K. Beyer, "Cyclic test data of six unreinforced masonry walls with different boundary conditions," Earthq. Spectra, vol. 31, no. 4, p.2459–2484, 2015.

DOI: 10.1193/101513EQS269

Google Scholar

[14] I. Khan, M. Ashraf, and M. Fahim, "Experimental characterization of brick masonry for lateral strength evaluation," Mag. Civ. Eng., vol. 104, no. 4, 2021.

Google Scholar

[15] J. A. Dauda, O. Iuorio, and P. B. Lourenço, "Numerical analysis and experimental characterisation of brick masonry," Int. J. Mason. Res. Innov., vol. 5, no. 3, p.321–347, 2020.

DOI: 10.1504/IJMRI.2020.107994

Google Scholar

[16] N. Savalle, P. B. Lourenço, and G. Milani, "Joint Stiffness Influence on the First-Order Seismic Capacity of Dry-Joint Masonry Structures: Numerical DEM Investigations," Appl. Sci., vol. 12, no. 4, p.2108, 2022.

DOI: 10.3390/app12042108

Google Scholar

[17] M. Del Zoppo, M. Di Ludovico, A. Balsamo, and A. Prota, "Diagonal compression testing of masonry panels with irregular texture strengthened with inorganic composites," Mater. Struct. Constr., vol. 53, no. 4, p.1–17, 2020.

DOI: 10.1617/s11527-020-01539-z

Google Scholar

[18] R. Sousa, H. Sousa, and J. Guedes, "Diagonal compressive strength of masonry samples - Experimental and numerical approach," Mater. Struct. Constr., vol. 46, no. 5, p.765–786, 2013.

DOI: 10.1617/s11527-012-9933-z

Google Scholar

[19] N. Mojsilović, "Masonry subjected to semi-cyclic compression: Inelastic response modelling," Constr. Build. Mater., vol. 263, 2020.

DOI: 10.1016/j.conbuildmat.2020.120147

Google Scholar

[20] A. Abdullah, S. B. Jamaludin, M. M. Noor, and K. Hussin, "Composite cement reinforced coconut fiber: Physical and mechanical properties and fracture behavior," Aust. J. Basic Appl. Sci., vol. 5, no. 7, p.1228–1240, 2011.

Google Scholar

[21] G. Araya-Letelier, P. Maturana, M. Carrasco, F. C. Antico, and M. S. Gómez, "Mechanical-damage behavior of mortars reinforced with recycled polypropylene fibers," Sustain., vol. 11, no. 8, 2019.

DOI: 10.3390/su11082200

Google Scholar

[22] C. Higuera Flórez, J. Cárdenas-Pulido, and S. Rodríguez, "Evaluación del comportamiento a compresión y propiedades físicas de morteros de cemento reforzados con fibras recicladas PET," Sci. Tech., vol. 25, no. 2, p.269–279, 2020.

DOI: 10.22517/23447214.23771

Google Scholar

[23] R. Tuladhar and S. Yin, Sustainability of using recycled plastic fiber in concrete. Elsevier Ltd, 2019.

Google Scholar

[24] INEC, "Información Ambiental en Hogares ESPND 2018," Inst. Nac. Estad. y Censo, p.36, 2021.

Google Scholar

[25] Danilo Gomes de Arruda, "Programa Nacional para la Gestión Integral de Desechos Sólidos (PNGIDS)," p.6, 2021.

Google Scholar

[26] L. O. G. Vaca, "DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DE PROCESADORA DE BOTELLAS PLÁSTICAS PET RECICLADAS PARA LA OBTENCIÓN DE FIBRA DE POLIÉSTER." 2021.

DOI: 10.33262/concienciadigital.v4i1.2.1585

Google Scholar

[27] J. P. Ojeda, I. T. Mercante, and N. H. Fajardo, "Design and test of recycled plastic fibers for mortar reinforcement," Rev. Int. Contam. Ambient., vol. 36, no. 1, p.55–62, 2020.

DOI: 10.20937/RICA.2020.36.53423

Google Scholar

[28] I. E. de Normalización NTE INEN 2518:2010, "Morteros para Unidades de Mampostería." 2010.

Google Scholar

[29] NEC-SE-MP, Norma Ecuatoriana de la Construcción. Mampostería Estructural. Ecuador: Ministerio de Desarrollo Urbano y Vivienda, 2015.

Google Scholar

[30] I. N. de Normalización INN Chile, "Building construction - Ceramic bricks - Tests methods," Norma Chil. Of. NCh 167.Of2001, 2001.

Google Scholar

[31] EN 1052-3-2002, Methods of test for masonry - Part 3 - Shear Strength. European Union: European Committee for Standarization, 2007.

Google Scholar

[32] S. V. Polyakov, Bonding in Brickwork. Moscow: Gos Stroyizdat, 1959.

Google Scholar