Experimental Investigation of Friction Stir Welding on Al 2024-T3 and Al 7075-T6 Alloy

Article Preview

Abstract:

Aluminum alloys are becoming increasingly popular due to their potential to offer superior durability while being lower in weight. Most industrial sectors, including transportation, aviation, marine, automotive, and others, have a strong interest in light-weight components, particularly in the transportation industry. Traditional joining techniques have a negative impact on the joining of these lightweight industrial materials, necessitating the development of new environmentally friendly joining methods. The lap joint of Al 2024-T3 and Al 7075-T6 alloys is done utilizing friction stir welding (FSW) with tool rotational speed (TRS) and tool travel speed (TTS) as process parameters. In addition, a tensile and microhardness test was performed to determine the mechanical characteristics of the weld joints. For FSW joints, the hardness of the stir zone at the weld center at 1000 RPM and 40 mm/min is 151.86 Hv. Carbon inclusion in the stir zone is demonstrated by EDS investigation of tool material dispersion in the weld region.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-43

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.T. Gibson, D.H. Lammlein, T.J. Prater, W.R. Longhurst, C.D. Cox, M.C. Ballun, K.J. Dharmaraj, G.E. Cook, A.M. Strauss, Friction stir welding: Process, automation, and control, J. Manuf. Process. 16 (2014) 56–73.

DOI: 10.1016/j.jmapro.2013.04.002

Google Scholar

[2] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R Reports. 50 (2005) 1–78.

DOI: 10.1016/j.mser.2005.07.001

Google Scholar

[3] R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Recent advances in friction-stir welding - Process, weldment structure and properties, Prog. Mater. Sci. 53 (2008) 980–1023.

DOI: 10.1016/j.pmatsci.2008.05.001

Google Scholar

[4] G.K. Padhy, C.S. Wu, S. Gao, Friction stir based welding and processing technologies - processes, parameters, microstructures and applications: A review, J. Mater. Sci. Technol. 34 (2018) 1–38.

DOI: 10.1016/j.jmst.2017.11.029

Google Scholar

[5] Y.J. Chao, X. Qi, W. Tang, Heat transfer in friction stir welding - Experimental and numerical studies, J. Manuf. Sci. Eng. Trans. ASME. 125 (2003) 138–145.

DOI: 10.1115/1.1537741

Google Scholar

[6] Y.F. Sun, Y. Konishi, M. Kamai, H. Fujii, Microstructure and mechanical properties of S45C steel prepared by laser-assisted friction stir welding, Mater. Des. 47 (2013) 842–849.

DOI: 10.1016/j.matdes.2012.12.078

Google Scholar

[7] D.H. Choi, C.Y. Lee, B.W. Ahn, J.H. Choi, Y.M. Yeon, K. Song, H.S. Park, Y.J. Kim, C.D. Yoo, S.B. Jung, Frictional wear evaluation of WC-Co alloy tool in friction stir spot welding of low carbon steel plates, Int. J. Refract. Met. Hard Mater. 27 (2009) 931–936.

DOI: 10.1016/j.ijrmhm.2009.05.002

Google Scholar

[8] T.G. Santos, R.M. Miranda, P. Vilaça, Friction Stir Welding assisted by electrical Joule effect, J. Mater. Process. Technol. 214 (2014) 2127–2133. https://doi.org/10.1016/j.jmatprotec. 2014.03.012.

DOI: 10.1016/j.jmatprotec.2014.03.012

Google Scholar

[9] Y. Bai, X. Jiang, S. Chen, W. Jiang, Y. Han, T. Yuan, X. Wang, Microstructure and properties of electrically assisted stationary shoulder friction stir welded Ti6Al4V, Sci. Technol. Weld. Join. 26 (2021) 377–388.

DOI: 10.1080/13621718.2021.1923441

Google Scholar

[10] K.H. Song, T. Tsumura, K. Nakata, Development of microstructure and mechanical properties in laser-FSW hybrid welded inconel 600, Mater. Trans. 50 (2009) 1832–1837.

DOI: 10.2320/matertrans.M2009058

Google Scholar

[11] S.L. Campanelli, G. Casalino, C. Casavola, V. Moramarco, Analysis and comparison of friction stir welding and laser assisted friction stir welding of aluminum alloy, Materials (Basel). 6 (2013) 5923–5941.

DOI: 10.3390/ma6125923

Google Scholar

[12] X. Fei, Y. Ye, L. Jin, H. Wang, S. Lv, Special welding parameters study on Cu/Al joint in laser- heated friction stir welding, J. Mater. Process. Technol. 256 (2018) 160–171.

DOI: 10.1016/j.jmatprotec.2018.02.004

Google Scholar

[13] S. Chen, H. Zhang, X. Jiang, T. Yuan, Y. Han, X. Li, Mechanical properties of electric assisted friction stir welded 2219 aluminum alloy, J. Manuf. Process. 44 (2019) 197–206.

DOI: 10.1016/j.jmapro.2019.05.049

Google Scholar

[14] Y. Han, X. Jiang, S. Chen, T. Yuan, H. Zhang, Y. Bai, Y. Xiang, X. Li, Microstructure and mechanical properties of electrically assisted friction stir welded AZ31B alloy joints, J. Manuf. Process. 43 (2019) 26–34.

DOI: 10.1016/j.jmapro.2019.05.011

Google Scholar

[15] D.K. Yaduwanshi, S. Bag, S. Pal, Effect of Preheating in Hybrid Friction Stir Welding of Aluminum Alloy, J. Mater. Eng. Perform. 23 (2014) 3794–3803. https://doi.org/.

DOI: 10.1007/s11665-014-1170-x

Google Scholar

[16] H. Fujii, T. Tatsuno, T. Tsumura, M. Tanaka, K. Nakata, Hybrid friction stir welding of carbon steel, Mater. Sci. Forum. 580–582 (2008) 393–396. https://doi.org/10.4028/www.scientific.net/ msf.580-582.393.

DOI: 10.4028/www.scientific.net/msf.580-582.393

Google Scholar

[17] A.I. Álvarez, V. Cid, G. Pena, J. Sotelo, D. Verdera, Assisted friction stir welding of carbon steel: Use of induction and laser as preheating techniques, Frict. Stir Weld. Process. VII. (2016) 117–126.

DOI: 10.1007/978-3-319-48108-1_13

Google Scholar

[18] K. Elangovan, V. Balasubramanian, Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy, Mater. Des. 29 (2008) 362–373.

DOI: 10.1016/j.matdes.2007.01.030

Google Scholar

[19] C.H. Muralimohan, V. Muthupandi, K. Sivaprasad, Properties of Friction Welding Titanium- stainless Steel Joints with a Nickel Interlayer, Procedia Mater. Sci. 5 (2014) 1120–1129.

DOI: 10.1016/j.mspro.2014.07.406

Google Scholar

[20] Y. Gao, T. Tsumura, K. Nakata, Dissimilar welding of titanium alloys to steels, Trans. JWRI. 41 (2012) 7–12.

Google Scholar

[21] M.J. Jones, P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux, J.H. Driver, Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy, Scr. Mater. 52 (2005) 693–697.

DOI: 10.1016/j.scriptamat.2004.12.027

Google Scholar

[22] S.A. Khodir, T. Shibayanagi, Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 148 (2008) 82–87.

DOI: 10.1016/j.mseb.2007.09.024

Google Scholar

[23] I. Galvão, J.C. Oliveira, A. Loureiro, D.M. Rodrigues, Formation and distribution of brittle structures in friction stir welding of aluminium and copper: Influence of shoulder geometry, Intermetallics. 22 (2012) 122–128

DOI: 10.1016/j.intermet.2011.10.014

Google Scholar

[24] S. Shankar, K. Saw, S. Chattopadhyaya, S. Hloch, 2018. Investigation on different type of defects, temperature variation and mechanical properties of friction stir welded lap joint of aluminum alloy 6101-T6. 5.11 (2018) 24378-24386. https://doi.org/

DOI: 10.1016/j.matpr.2018.10.233

Google Scholar

[25] V. Kumar, S. Chakraborty. Analysis of the surface roughness characteristics of EDMed components using GRA method. In Proceedings of the International Conference on Industrial and Manufacturing Systems (CIMS-2020) Optimization in Industrial and Manufacturing Systems and Applications (2022) 461-478. Springer International Publishing.

DOI: 10.1007/978-3-030-73495-4_32

Google Scholar

[26] Salloomi, K. N., Hussein, F. I., & Al-Sumaidae, S. N. (2020). Temperature and stress evaluation during three different phases of friction stir welding of AA 7075-T651 alloy. Modelling and simulation in engineering, (2020) 1-11.

DOI: 10.1155/2020/3197813

Google Scholar

[27] Kumar, D., Alam, M. P., & Sinha, A. N. (2023). Numerical and Experimental Analysis of Friction Stir Welding of Aluminum Alloy AA2024-T4. In Recent Trends in Mechanical Engineering: Select Proceedings of PRIME 2021 (2023) 35-44. Singapore: Springer Nature Singapore.

DOI: 10.1007/978-981-19-7709-1_4

Google Scholar