[1]
Mazloom, M., Ramezanianpour, A. A., & Brooks, J. J. (2004). Effect of silica fume on mechanical properties of high-strength concrete. Cement and Concrete Composites, 26(4), 347–357
DOI: 10.1016/S0958-9465(03)00017-9
Google Scholar
[2]
Megat Johari, M. A., Brooks, J. J., Kabir, S., & Rivard, P. (2011). Influence of supplementary cementitious materials on engineering properties of high strength concrete. Construction and Building Materials, 25(5), 2639–2648
DOI: 10.1016/j.conbuildmat.2010.12.013
Google Scholar
[3]
Ramezanianpour, A. A., & Bahrami Jovein, H. (2012). Influence of metakaolin as supplementary cementing material on strength and durability of concretes. Construction and Building Materials, 30, 470–479
DOI: 10.1016/j.conbuildmat.2011.12.050
Google Scholar
[4]
Güneyisi, E., Gesoǧlu, M., Karaoǧlu, S., & Mermerdaş, K. (2012). Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Construction and Building Materials, 34, 120–130
DOI: 10.1016/j.conbuildmat.2012.02.017
Google Scholar
[5]
Dinakar, P., Sahoo, P. K., & Sriram, G. (2013). Effect of Metakaolin Content on the Properties of High Strength Concrete. International Journal of Concrete Structures and Materials, 7(3), 215–223
DOI: 10.1007/s40069-013-0045-0
Google Scholar
[6]
Shannag, M. J. (n.d.). High strength concrete containing natural pozzolan and silica fume. www.elsevier.com/locate/cemconcomp
Google Scholar
[7]
Babu, V. S., Mullick, A. K., Jain, K. K., & Singh, P. K. (2014). Strength and durability characteristics of high-strength concrete with recycled aggregate influence of processing. Journal of Sustainable Cement-Based Materials, 4(1), 54–71
DOI: 10.1080/21650373.2014.976777
Google Scholar
[8]
Rashiddadash, P., Ramezanianpour, A. A., & Mahdikhani, M. (2014). Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice. Construction and Building Materials, 51, 313–320
DOI: 10.1016/j.conbuildmat.2013.10.087
Google Scholar
[9]
Keleştemur, O., & Demirel, B. (2015). Effect of metakaolin on the corrosion resistance of structural lightweight concrete. Construction and Building Materials, 81, 172–178
DOI: 10.1016/j.conbuildmat.2015.02.049
Google Scholar
[10]
Juenger, M. C. G., & Siddique, R. (2015). Recent advances in understanding the role of supplementary cementitious materials in concrete. In Cement and Concrete Research (Vol. 78, p.71–80). Elsevier Ltd
DOI: 10.1016/j.cemconres.2015.03.018
Google Scholar
[11]
Elchalakani, M. (2015). High strength rubberized concrete containing silica fume for the construction of sustainable road side barriers. Structures, 1, 20–38
DOI: 10.1016/j.istruc.2014.06.001
Google Scholar
[12]
Rama, V., Garikipati, R., Viswanadha Varma, D., & Rao, G. V. R. (n.d.). Influence of Metakaolin in High Strength Concrete of M70 Grade for Various Temperatures and Acidic Medium Strength and durability studies on special concretes View project Influence of Metakaolin in High Strength Concrete of M70 Grade for Various Temperatures and Acidic Medium. In IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE (Vol. 11, Issue 3). www.iosrjournals.org
DOI: 10.9790/1684-11373237
Google Scholar
[13]
Khamchin, F., Rasiah, S., & Sirivivatnanon, V. (2015). Properties of Metakaolin Concrete-A Review Steel Corrosion in Australian Portland and Blended Cement Concretes View project Delayed Ettringite Formation View project. https://www.researchgate.net/publication/ 28329880
Google Scholar
[14]
Shi, C., Wang, D., Wu, L., & Wu, Z. (2015). The hydration and microstructure of ultra high-strength concrete with cement-silica fume-slag binder. Cement and Concrete Composites, 61, 44–52
DOI: 10.1016/j.cemconcomp.2015.04.013
Google Scholar
[15]
Amin, M., & Abu El-Hassan, K. (2015). Effect of using different types of nano materials on mechanical properties of high strength concrete. Construction and Building Materials, 80, 116–124
DOI: 10.1016/j.conbuildmat.2014.12.075
Google Scholar
[16]
Barbhuiya, S., Chow, P. L., & Memon, S. (2015). Microstructure, hydration and nanomechanical properties of concrete containing metakaolin. Construction and Building Materials, 95, 696–702
DOI: 10.1016/j.conbuildmat.2015.07.101
Google Scholar
[17]
Cyr, M., & Pouhet, R. (2016). Carbonation in the pore solution of metakaolin-based geopolymer. Cement and Concrete Research, 88, 227–235
DOI: 10.1016/j.cemconres.2016.05.008
Google Scholar
[18]
Singh, S., Nagar, R., Agrawal, V., Rana, A., & Tiwari, A. (2016). Sustainable utilization of granite cutting waste in high strength concrete. Journal of Cleaner Production, 116, 223–235
DOI: 10.1016/j.jclepro.2015.12.110
Google Scholar
[19]
Narmatha, M., & Felixkala, D. . (2016). METAKAOLIN –THE BEST MATERIAL FOR REPLACEMENT OF CEMENT IN CONCRETE. International Journal of Advanced Research, 4(7), 1690–1696
DOI: 10.21474/IJAR01/1054
Google Scholar
[20]
Ghannam, S., Najm, H., & Vasconez, R. (2016). Experimental study of concrete made with granite and iron powders as partial replacement of sand. Sustainable Materials and Technologies, 9, 1–9
DOI: 10.1016/j.susmat.2016.06.001
Google Scholar
[21]
Singh, N., & Singh, S. P. (2016). Carbonation and electrical resistance of self compacting concrete made with recycled concrete aggregates and metakaolin. Construction and Building Materials, 121, 400–409
DOI: 10.1016/j.conbuildmat.2016.06.009
Google Scholar
[22]
Hamad, B. S., & Dawi, A. H. (2017). Sustainable normal and high strength recycled aggregate concretes using crushed tested cylinders as coarse aggregates. Case Studies in Construction Materials, 7, 228–239
DOI: 10.1016/j.cscm.2017.08.006
Google Scholar
[23]
Shen, P., Lu, L., Chen, W., Wang, F., & Hu, S. (2017). Efficiency of metakaolin in steam cured high strength concrete. Construction and Building Materials, 152, 357–366
DOI: 10.1016/j.conbuildmat.2017.07.006
Google Scholar
[24]
Dadsetan, S., & Bai, J. (2017). Mechanical and microstructural properties of self-compacting concrete blended with metakaolin, ground granulated blast-furnace slag and fly ash. Construction and Building Materials, 146, 658–667
DOI: 10.1016/j.conbuildmat.2017.04.158
Google Scholar
[25]
Study of Partial Replacement of Cement by Silica Fume. (2017)
DOI: 10.21474/IJAR01
Google Scholar
[26]
Fallah, S., & Nematzadeh, M. (2017). Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Construction and Building Materials, 132, 170–187
DOI: 10.1016/j.conbuildmat.2016.11.100
Google Scholar
[27]
Sharma, N. K., Kumar, P., Kumar, S., Thomas, B. S., & Gupta, R. C. (2017). Properties of concrete containing polished granite waste as partial substitution of coarse aggregate. Construction and Building Materials, 151, 158–163
DOI: 10.1016/j.conbuildmat.2017.06.081
Google Scholar
[28]
Vishalakshi, K. P., Revathi, V., & Sivamurthy Reddy, S. (2018). Effect of type of coarse aggregate on the strength properties and fracture energy of normal and high strength concrete. Engineering Fracture Mechanics, 194, 52–60
DOI: 10.1016/j.engfracmech.2018.02.029
Google Scholar
[29]
Standard, I. (2019). oa QØhV feJ vuq ikru-ekxZ n'khZ fl¼ka r Concrete Mix Proportioning-Guidelines ( Second Revision ) Hkkjrh; ekud. www.standardsbis.in
Google Scholar
[30]
Gražulytė, J., Vaitkus, A., Šernas, O., & Čygas, D. (2020). Effect of silica fume on high-strength concrete performance. World Congress on Civil, Structural, and Environmental Engineering, 162-1-162–166
DOI: 10.11159/icsect20.162
Google Scholar
[31]
Kalpana, M., Vaidevi, C., Vijayan, D. S., & Benin, S. R. (2020). Benefits of metakaolin over microsilica in developing high performance concrete. Materials Today: Proceedings, 33, 977–983
DOI: 10.1016/j.matpr.2020.06.566
Google Scholar
[32]
Mahalakshmi, S. H. V., & Khed, V. C. (2020). Experimental study on M-sand in self-compacting concrete with and without silica fume. Materials Today: Proceedings, 27, 1061–1065
DOI: 10.1016/j.matpr.2020.01.432
Google Scholar
[33]
Mohammed Ali, A. A., Zidan, R. S., & Ahmed, T. W. (2020). Evaluation of high-strength concrete made with recycled aggregate under effect of well water. Case Studies in Construction Materials, 12
DOI: 10.1016/j.cscm.2020.e00338
Google Scholar
[34]
Srinivas, K., Vijaya, S. K., & Jagadeeswari, K. (2020). Concrete with ceramic and granite waste as coarse aggregate. Materials Today: Proceedings, 37(Part 2), 2089–2092
DOI: 10.1016/j.matpr.2020.07.521
Google Scholar
[35]
Xie, J., Zhang, H., Duan, L., Yang, Y., Yan, J., Shan, D., Liu, X., Pang, J., Chen, Y., Li, X., & Zhang, Y. (2020). Effect of nano metakaolin on compressive strength of recycled concrete. Construction and Building Materials, 256
DOI: 10.1016/j.conbuildmat.2020.119393
Google Scholar
[36]
Verma, S.K., Singla, C.S., Nadda, G., & Kumar, R.(2020). Development of sustainable concrete using silica fume and stone dust. Materials Today: Proceedings, 32, 882–887
DOI: 10.1016/j.matpr.2020.04.364
Google Scholar
[37]
Tangaramvong, S., Nuaklong, P., Khine, M. T., & Jongvivatsakul, P. (2021). The influences of granite industry waste on concrete properties with different strength grades. Case Studies in Construction Materials, 15
DOI: 10.1016/j.cscm.2021.e00669
Google Scholar
[38]
Guo, Y. B., Gao, G. F., Jing, L., & Shim, V. P. W. (2021a). Dynamic properties of granite rock employed as coarse aggregate in high-strength concrete. International Journal of Impact Engineering, 156, 103955
DOI: 10.1016/J.IJIMPENG.2021.103955
Google Scholar
[39]
Guo, Y. B., Gao, G. F., Jing, L., & Shim, V. P. W. (2021b). Dynamic properties of granite rock employed as coarse aggregate in high-strength concrete. International Journal of Impact Engineering, 156
DOI: 10.1016/j.ijimpeng.2021.103955
Google Scholar
[40]
Younis, K.H.(2021). Metakaolin-modified recycled aggregate concrete containing recycled steel fibers. Materials Today: Proceedings, 45, 4689-4694. https://doi.org/10.1016/j.matpr. 2021.01.120
DOI: 10.1016/j.matpr.2021.01.120
Google Scholar