New Insight into CO2 Sequestration: A Blended Approach of Artificial Intelligence and Machine Learning Tools

Article Preview

Abstract:

Recent advances in the fields of artificial intelligence and machine learning have paved a way in solving the unsolved problems embarking into a new dimension, especially, when there is increase in complexity of molecules. Reports have shown the necessity to employ these techniques to address the environmental problems. Herein we report the CO2 sequestration process by means of artificial intelligence (AI) and machine learning (ML) tools. The AI and ML approaches adopted enhance the accuracy of the results and at the same time give scope to explore new strategies in understanding the CO2 sequestration process. Herein we considered the reported active compounds observed in traditional medicinal plants like Oscimum, Azadiracta, Psidium and Ficus leaves and Curcuma and, their interactions with CO2. The crystal structures of the active compounds, collected from NCBI portal, are used for all the calculations. To understand the probable interactions of CO2 with active components AI tool IBMRXN was used and the properties of molecules are evaluated. ML techniques are employed using density functional theory method. Keeping in view the complexity of the molecules, optimization of the molecules is carried out at M062X/6-31G(d) level of theory. HOMO-LUMO energy gaps and binding energies are calculated at M062X/6-311+G(d,p)//M062X/6-31G(d) level of theory.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-148

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Thomson, Air pollution—a review for conservation chemists, Stud. Conserv. 10 (1965) 147–167.

Google Scholar

[2] A.K. Jorgenson, Does Foreign Investment Harm the Air We Breathe and the Water We Drink? Organ. Environ. 20 (2007) 137-156.

DOI: 10.1177/1086026607302153

Google Scholar

[3] K.R. Smith, Biofuels, Air Pollution, and Health, Springer, Boston, MA, 1987.

Google Scholar

[4] R. M. Harrision, Assessment and Reclamation of Contaminated Land, Royal Society of Chemistry, Cambridge UK, 2001.

Google Scholar

[5] C. S. Rao, Environmental Pollution Control New age international (P) Limited, New Delhi, 1991.

Google Scholar

[6] I. D. Pulford, C. Watson, Phytoremediation of heavy metal-contaminated land by trees—a review, Environ. Int. 29 (2003) 529– 540.

DOI: 10.1016/s0160-4120(02)00152-6

Google Scholar

[7] C. Buvaneswaran, K. Arivoli, T. Sivaranjani, E. Menason, K. Vinothkumar, S. Padmini and S. Senthilkumar, Intra-specific variation in response of Neem (Azadirachta indica A. Juss) to elevated CO2 levels and biochemical characterization of differently responding plants, Tropical Plant Res. 3 (2016) 551–557.

DOI: 10.22271/tpr.2016.v3.i3.072

Google Scholar

[8] K.P. Beckett, P.H. Freer-Smith, G. Taylor, Urban woodlands: their role in reducing the effects of particulate pollution, Environ. Pollut. 99 (1998) 347-360.

DOI: 10.1016/s0269-7491(98)00016-5

Google Scholar

[9] A. Begum, S. Harikrishna, Evaluation of Some Tree Species to Absorb Air Pollutants in Three Industrial Locations of South Bengaluru, India, J. Chem. 7 (2010) S151-S156.

DOI: 10.1155/2010/398382

Google Scholar

[10] B. Simran, M. Gupta, N. Dohare, A. Goel, R. Gupta, S. Nanda, Pollution controlling ability of plant species growing on college campus in Delhi, India, Pollut. Res. 38 (2019) S23-S29.

Google Scholar

[11] A. E. Creamer and B. Gao, Carbon-Based Adsorbents for Postcombustion CO2 Capture: A Critical Review, Environ. Sci. Technol. 50 (2016) 7276−7289.

DOI: 10.1021/acs.est.6b00627

Google Scholar

[12] V. Nafisi, M. Hagg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, J. Memb. Sci. 459 (2014) 244–255.

DOI: 10.1016/j.memsci.2014.02.002

Google Scholar

[13] S. Rafiq, L. Deng, M. Hagg, ChemBioEng Rev. 3 (2016) 68–85.

Google Scholar

[14] H. Yang, Z. Xu, M. Fan, R. Gupta, R. B.Slimane, A. E Bland, I. Wright, Progress in carbon dioxide separation and capture: a review, J. Environ. Sci. 20 (2008) 14–27.

DOI: 10.1016/s1001-0742(08)60002-9

Google Scholar

[15] X. Jiang, A review of physical modelling and numerical simulation of long-term geological storage of CO2, Applied Energy 88 (2011) 3557–3566.

DOI: 10.1016/j.apenergy.2011.05.004

Google Scholar

[16] A.M. Omer, Energy Analysis and Proposals for Sustainability from the Energy Transition, Renew. Sustain. Energy Rev. 12 (2008) 2265-2300.

Google Scholar

[17] K.M. Sabil, B. Partoon, Recent advances on carbon dioxide capture through a hydrate-based gas separation process, Curr. Opin. Green Sustain. Chem. 11 (2018) 22-26.

DOI: 10.1016/j.cogsc.2018.03.006

Google Scholar

[18] J. He, Y. Liu, Z. Ma, S. Deng, R. Zhao, L. Zhao A Literature Research on the Performance Evaluation of Hydrate-based CO2 Capture and Separation Process, Energy Procedia 105 (2017) 4090-4097.

DOI: 10.1016/j.egypro.2017.03.867

Google Scholar

[19] N. Dave, T. Do, G. Puxty, R. Rowland, P.H.M. Feron, M.I. Attalla, CO2 capture by aqueous amines and aqueous ammonia–A Comparison, Energy Procedia 1 (2009) 949-954.

DOI: 10.1016/j.egypro.2009.01.126

Google Scholar

[20] A. Wahby, J. Silvestre-Albero, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, CO2 adsorption on carbon molecular sieves, Microporous Mesoporous Mater. 164 (2012) 280-287.

DOI: 10.1016/j.micromeso.2012.06.034

Google Scholar

[21] A. I. Osman, M. Hefny, M.I.A.A. Maksoud, A.M. Elgarahy, D.W. Rooney, Recent advances in carbon capture storage and utilisation technologies: a review, Environ. Chem. Lett. 19 (2021) 797-849.

DOI: 10.1007/s10311-020-01133-3

Google Scholar

[22] D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renew Sustain Energy Rev. 39 (2014) 426-443.

DOI: 10.1016/j.rser.2014.07.093

Google Scholar

[23] R. Lal, Carbon sequestration, Philos Trans R Soc Lond B Biol Sci 363 (2008) 815-830.

Google Scholar

[24] Y. Tokiwa, B. P. Calabia, C. U. Ugwu, S. Aiba, Biodegradability of Plastics, Int. J. Mol. Sci. 10 (2009) 3722–3742.

DOI: 10.3390/ijms10093722

Google Scholar

[25] S. Doo, A. Chae, D. Kim, T. Oh, T. Y. Ko, S. J. Kim, D. Koh, C. M. Koo, Mechanism and Kinetics of Oxidation Reaction of Aqueous Ti3C2Tx Suspensions at Different pHs and Temperatures, ACS Appl. Mater Interfaces 13 (2021) 22855-22865.

DOI: 10.1021/acsami.1c04663

Google Scholar

[26] Z. Jiang, V. Alexandrov, Electrocatalytic Activity of Oxygen-Functionalized Carbon Electrodes for Vanadium Redox Flow Batteries from Free-Energy Calculations, ACS Appl. Energy Mater. 3 (2020) 7543-7549.

DOI: 10.1021/acsaem.0c00972

Google Scholar

[27] D. Polino, E. Grifoni, R. Rousseau, M. Parrinello, V. Glezakou, How Collective Phenomena Impact CO2 Reactivity and Speciation in Different Media, J. Phys. Chem. A 124 (2020) 3963-3975.

DOI: 10.1021/acs.jpca.9b11744

Google Scholar

[28] M. Kowacz, G. H. Pollack, Moving Water Droplets: The Role of Atmospheric CO2 and Incident Radiant Energy in Charge Separation at the Air-Water Interface, J. Phys. Chem. B 123 (2019) 11003-11013.

DOI: 10.1021/acs.jpcb.9b09161

Google Scholar

[29] N. Stolte, D. Pan, Large Presence of Carbonic Acid in CO2-Rich Aqueous Fluids under Earth's Mantle Conditions, J. Phys Chem. Lett. 10 (2019) 5135-5141.

DOI: 10.1021/acs.jpclett.9b01919

Google Scholar

[30] D. Aaron, C. Tsouris, Separation of CO2 from Flue Gas: A Review, Sci. Technol. 40 (2005) 321–348.

Google Scholar

[31] P. Pakzad, M. Mofarahi, M. Ansarpour, M. Afkhamipour, Chang-Ha Lee, "CO2 absorption by common solvents", in Advances in carbon capture, M.R. Rahimpour, M. Farsi (Woodhead Publishing,, Cambridge), 51-87.

DOI: 10.1016/b978-0-12-819657-1.00003-7

Google Scholar

[32] A. S. Mahadevi and G. N. Sastry, Cation-π interaction: its role and relevance in chemistry, biology, and material science, Chem. Rev. 113 (2013) 2100-2138.

DOI: 10.1021/cr300222d

Google Scholar

[33] A. S. Mahadevi and G. N. Sastry, Cooperativity in Noncovalent Interactions, Chem. Rev. 116 (2016) 2775.

DOI: 10.1021/cr500344e

Google Scholar

[34] Ken Arnold, Maurice Stewart, in "Design of Gas handling systems and facilities", in Surface Production Operations, Ken Arnold, Maurice Stewart (Gulf professional publishing, England), 19-20.

DOI: 10.1016/b978-088415822-6/50001-5

Google Scholar

[35] Z. Liang, W. Rongwong, H. Liu, K. Fu, H. Gao, F. Cao, R. Zhang, T. Sema, A. Henni, K. Sumon, D. Nath, D. Gelowitz, W. Srisang, C. Saiwan, A. Benamor, M. Al-Marri, H. Shi, T. Supap, C. Chan, Q. Zhou, M. Abu-Zahra, M. Wilson, W. Olson, R. Idem, P. Tontiwachwuthikul, Recent progress and new developments in post-combustion carbon-capture technology with amine based solvents, Int. J. Greenh. Gas Control, 40 (2015) 26-54.

DOI: 10.1016/j.ijggc.2015.06.017

Google Scholar

[36] J. M. Berg, J, L, Tymoczko, L. Stryer, Biochemistry. 5th edition. New York: W H Freeman; 2002. Section 1.3, Chemical Bonds in Biochemistry.

Google Scholar

[37] "Found in Translation": predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models. P. Schwaller, T. Gaudin, D Lanyi, C. Bekas, T. Laino. Chem. Sci., 2018, 9, 6091-6098

DOI: 10.1039/c8sc02339e

Google Scholar

[38] Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction. P. Schwaller, T. Laino, T. Gaudin, P. Bolgar, C. Bekas, A. A. Lee. ACS Cent. Sci. 2019, 5, 9, 1572–1583

DOI: 10.1021/acscentsci.9b00576

Google Scholar

[39] IBM RXN for chemistry. https://rxn.res.ibm.com.

Google Scholar

[40] X. Yang, Y. Wang, R. Byrne, G. Schneider, S. Yan, Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery, Chem. Rev. 119 (2019) 10520-10594.

DOI: 10.1021/acs.chemrev.8b00728

Google Scholar

[41] Information on https://www.ibm.com/blogs/research/2019/10/ibm-brings-ai-retrosynthetic-analysis-to-the-cloud

Google Scholar

[42] Information on https://www.rdworldonline.com/ibm-platform-uses-ai-to-predict-chemical-reactions/

Google Scholar

[43] Marvin 21.9.0, 20201, ChemAxon software.

Google Scholar

[44] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Na-katsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G.Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega,J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö.Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2009.

Google Scholar

[45] A. Amalraj, A. Pius, S. Gopi, S. Gopi, Extract of neem (Azadirachta indica) leaf exhibits bactericidal effect against multidrug resistant pathogenic bacteria of poultry, J. Tradit. Complement Med. 7 (2017) 205–233.

DOI: 10.1002/vms3.511/v1/review1

Google Scholar

[46] E. Ali, Md. S. Islam, Md. I. Hossen, Mst. M. Khatun, Md. A. Islam, Extract of neem (Azadirachta indica) leaf exhibits bactericidal effect against multidrug resistant pathogenic bacteria of poultry, Vet. Med. Sci. (2021) 1-7.

DOI: 10.1002/vms3.511/v2/response1

Google Scholar

[47] P. Pattanayak, P. Behera, D. Das, S. K. Panda, Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview, Pharmacogn Rev. 4 (2010) 95–105.

DOI: 10.4103/0973-7847.65323

Google Scholar

[48] S. Shaheena, A. D. Chintagunta, V. R. Dirisala, N. S. Sampath Kumar, Extraction of bioactive compounds from Psidium guajava and their application in dentistry, AMB Expr 9 (2019) 208.

DOI: 10.1186/s13568-019-0935-x

Google Scholar

[49] S.B. Chandrasekar, M. Bhanumathy, A.T. Pawar, T. Somasundaram, Phytopharmacology of Ficus religiosa, Pharmacogn Rev. 4 (2010) 195–199.

DOI: 10.4103/0973-7847.70918

Google Scholar