Bioenergy Production from Tannery Waste via a Single-Chamber Microbial Fuel Cell with Fly Ash Cathodic Electrodes

Article Preview

Abstract:

Microbial Fuel Cells (MFCs) are attracting attention for their application in simultaneous energy production and waste treatment, as innovative biochemical reactors. They usually operate under adiabatic conditions, utilizing microorganisms to treat wastewater compositions using mainly carbon-based electrodes as anodes and cathodes. During the past years, various anodic and cathodic electrodes with plenty of variations were used in MFC configurations. On the anode side metal-based electrodes are used while on the cathode, ceramic electrodes are currently introduced. In this study, a stainless steel anode is used in a single chamber MFC. Ceramic cathodic electrodes are used, coated with Fly Ash (FA). The mixed transition oxides of FA are tested as potential cathodic catalysts in the operation of the MFC. The FA powder was deposited by two methods: an ultrasound-assisted method and a conventional brush coating. Tannery liquid waste is used as the waste/substrate to be treated in the single-chamber MFC. The configuration with ultrasound-assisted Fly-Ash produced cathodic electrodes, led to the highest power output in batch operation modes and a high degree of simultaneous COD decrease of the tannery waste reaching the values of 0.44 mW/gcat and 85.6% COD removal respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-112

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Suthanthararajan, E. Ravindranath, K. Chits, B. Umamaheswari, T. Ramesh, S. Rajamam, Membrane application for recovery and reuse of water from treated tannery wastewater, Desalination, 164 (2004) 151-156.

DOI: 10.1016/s0011-9164(04)00174-2

Google Scholar

[2] C. Di Iaconi, A. Lopez, R. Ramadori, A.C. Di Pinto, R. Passino, Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR), Water Research, 36 (2002) 2205-2214.

DOI: 10.1016/s0043-1354(01)00445-6

Google Scholar

[3] S.G. Schrank;, U. Bieling;, H.J. José;, R.F.P.M. Moreira;, H.F. Schröder, Generation of endocrine disruptor compounds during ozone treatment of tannery wastewater confirmed by biological effect analysis and substance specific analysis, Water Science & Technology, 59 (2009) 31-38.

DOI: 10.2166/wst.2009.762

Google Scholar

[4] T.P. Sauer, L. Casaril, A.L.B. Oberziner, H.J. José, R.d.F.P.M. Moreira, Advanced oxidation processes applied to tannery wastewater containing Direct Black 38—Elimination and degradation kinetics, Journal of Hazardous Materials, 135 (2006) 274-279.

DOI: 10.1016/j.jhazmat.2005.11.063

Google Scholar

[5] C.R. Costa, C.M.R. Botta, E.L.G. Espindola, P. Olivi, Electrochemical treatment of tannery wastewater using DSA® electrodes, Journal of Hazardous Materials, 153 (2008) 616-627.

DOI: 10.1016/j.jhazmat.2007.09.005

Google Scholar

[6] L. Szpyrkowicz, S.N. Kaul, R.N. Neti, S. Satyanarayan, Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater, Water Research, 39 (2005) 1601-1613.

DOI: 10.1016/j.watres.2005.01.016

Google Scholar

[7] S. Haydar, J.A. Aziz, Coagulation–flocculation studies of tannery wastewater using combination of alum with cationic and anionic polymers, Journal of Hazardous Materials, 168 (2009) 1035-1040.

DOI: 10.1016/j.jhazmat.2009.02.140

Google Scholar

[8] S. Goswami;, D. Mazumder;p, Treatment of Chrome Tannery Wastewater by Biological Process - A Mini Review, International Journal of Environmental and Ecological Engineering, 7 (2013).

Google Scholar

[9] G.Durai;, M. Rajasimman, Biological Treatment of Tannery Wastewater- A review, Journal of Environmental Science and Terchnology, 4 (2011) 1-17.

Google Scholar

[10] L. Ezziat, A. Elabed, S. Ibnsouda, S. El Abed, Challenges of Microbial Fuel Cell Architecture on Heavy Metal Recovery and Removal From Wastewater, Frontiers in Energy Research, 7 (2019).

DOI: 10.3389/fenrg.2019.00001

Google Scholar

[11] T.H.J.A. Sleutels, A. Ter Heijne, C.J.N. Buisman, H.V.M. Hamelers, Bioelectrochemical Systems: An Outlook for Practical Applications, ChemSusChem, 5 (2012) 1012-1019.

DOI: 10.1002/cssc.201100732

Google Scholar

[12] J.R. Trapero, L. Horcajada, J.J. Linares, J. Lobato, Is microbial fuel cell technology ready? An economic answer towards industrial commercialization, Applied Energy, 185 (2017) 698-707.

DOI: 10.1016/j.apenergy.2016.10.109

Google Scholar

[13] K.-J. Chae, M.-J. Choi, K.-Y. Kim, F.F. Ajayi, W. Park, C.-W. Kim, I.S. Kim, Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells, Bioresource Technology, 101 (2010) 5350-5357.

DOI: 10.1016/j.biortech.2010.02.035

Google Scholar

[14] T. Kamperidis, P.K. Pandis, C. Argirusis, G. Lyberatos, A. Tremouli, Effect of Food Waste Condensate Concentration on the Performance of Microbial Fuel Cells with Different Cathode Assemblies, Sustainability, 14 (2022) 2625.

DOI: 10.3390/su14052625

Google Scholar

[15] G. Mohanakrishna, S. Venkata Mohan, P.N. Sarma, Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation, Journal of Hazardous Materials, 177 (2010) 487-494.

DOI: 10.1016/j.jhazmat.2009.12.059

Google Scholar

[16] R.S. Blissett, N.A. Rowson, A review of the multi-component utilisation of coal fly ash, Fuel, 97 (2012) 1-23.

DOI: 10.1016/j.fuel.2012.03.024

Google Scholar

[17] D.P. Bentz, M.A. Peltz, A. Durán-Herrera, P. Valdez, C.A. Juárez, Thermal properties of high-volume fly ash mortars and concretes, Journal of Building Physics, 34 (2010) 263-275.

DOI: 10.1177/1744259110376613

Google Scholar

[18] M. Amran, S. Debbarma, T. Ozbakkaloglu, Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties, Construction and Building Materials, 270 (2021) 121857.

DOI: 10.1016/j.conbuildmat.2020.121857

Google Scholar

[19] S. Thokchom;, D. Dutta;, S. Ghosh;, Effect of Incorporating Silica Fume in Fly Ash Geopolymers, International Journal of Civil and Environmental Engineering, 5 (2011).

Google Scholar

[20] X. Lingling, G. Wei, W. Tao, Y. Nanru, Study on fired bricks with replacing clay by fly ash in high volume ratio, Construction and Building Materials, 19 (2005) 243-247.

DOI: 10.1016/j.conbuildmat.2004.05.017

Google Scholar

[21] M. Webster, H.Y. Lee, K. Pepa, N. Winkler, I. Kretzschmar, M.J. Castaldi, Investigation on electrical surface modification of waste to energy ash for possible use as an electrode material in microbial fuel cells, Waste Manag Res, 36 (2018) 259-268.

DOI: 10.1177/0734242x17751847

Google Scholar

[22] G. Sivasubramanian, K. Hariharasubramanian, P. Deivanayagam, J. Ramaswamy, High-performance SPEEK/SWCNT/fly ash polymer electrolyte nanocomposite membranes for fuel cell applications, Polymer Journal, 49 (2017) 703-709.

DOI: 10.1038/pj.2017.38

Google Scholar

[23] Y. Jia, H. Feng, D. Shen, Y. Zhou, T. Chen, M. Wang, W. Chen, Z. Ge, L. Huang, S. Zheng, High-performance microbial fuel cell anodes obtained from sewage sludge mixed with fly ash, Journal of Hazardous Materials, 354 (2018) 27-32.

DOI: 10.1016/j.jhazmat.2018.04.008

Google Scholar

[24] E.R. Dyartanti, A. Jumari, A. Nur, A. Purwanto, Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film, AIP Conference Proceedings, 1710 (2016) 030004.

DOI: 10.1063/1.4941470

Google Scholar

[25] P.K. Pandis, T. Kamperidis, K. Bariamis, I. Vlachos, C. Argirusis, V.N. Stathopoulos, G. Lyberatos, A. Tremouli, Comparative Study of Different Production Methods of Activated Carbon Cathodic Electrodes in Single Chamber MFC Treating Municipal Landfill Leachate, Applied Sciences, 12 (2022) 2991.

DOI: 10.3390/app12062991

Google Scholar

[26] Α. Tremouli, P.K. Pandis, I. Karydogiannis, V.N. Stathopoulos, C. Argirusis, G. Lyberatos, Operation and Electro(chemical) characterization of a microbial fuel cell stack fed with fermentable household waste extract, Global NEST Journal, 21 (2019) 253-257.

DOI: 10.1016/j.egypro.2019.02.051

Google Scholar

[27] X. Dominguez-Benetton, S. Sevda, K. Vanbroekhoven, D. Pant, The accurate use of impedance analysis for the study of microbial electrochemical systems, Chemical Society Reviews, 41 (2012) 7228-7246.

DOI: 10.1039/c2cs35026b

Google Scholar