Investigating Sustainable Materials for AEM Electrolysers: Strategies to Improve the Cost and Environmental Impact

Article Preview

Abstract:

In recent years, the EU policy identified the hydrogen as one of the main energy vectors to support the power production from renewable sources. Coherently, electrolysis is suitable to convert energy in hydrogen with no carbon emission and high purity level. Among the electrolysis technologies, the anion exchange membrane (AEM) seems to be promising for the performance and the development potential at relatively high cost. In the present work, AEM electrolysers, and their technological bottlenecks, have been investigated, in comparison with other electrolysers’ technology such as alkaline water electrolysis and proton exchange membranes. Major efforts and improvements are investigated about innovative materials design and the corresponding novel approach as main focus of the present review. In particular, this work evaluated new materials design studies, to enhance membrane resistance due to working cycles at temperatures close to 80 °C in alkaline environment, avoiding the employment of toxic and expensive compounds, such as fluorinated polymers. Different strategies have been explored, as tailored membranes could be designed as, for example, the inclusion of inorganic nanoparticles or the employment of not-fluorinated copolymers could improve membranes resistance and limit their environmental impact and cost. The comparison among materials’ membrane is actually limited by differences in the environmental conditions in which tests have been conducted, thereafter, this work aims to derive reliable information useful to improve the AEM cell efficiency among long-term working periods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-92

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] European Commission, "Communication from the commission to the european parliament, the council, the european economic and social committee and the committee of the regions - A hydrogen strategy for a climate-neutral Europe," 2020.

DOI: 10.1163/9789004322714_cclc_2020-0164-0816

Google Scholar

[2] IEA, "Net Zero by 2050: A Roadmap for the Global Energy Sector," 2021.

Google Scholar

[3] IEA, "Global Hydrogen Review 2021," 2021.

DOI: 10.1787/39351842-en

Google Scholar

[4] J. Incer-Valverde, L. J. Patiño-Arévalo, G. Tsatsaronis, and T. Morosuk, "Hydrogen-driven Power-to-X: State of the art and multicriteria evaluation of a study case," Energy Convers Manag, vol. 266, no. May, p.115814, Aug. 2022.

DOI: 10.1016/j.enconman.2022.115814

Google Scholar

[5] C. Acar and I. Dincer, "Comparative assessment of hydrogen production methods from renewable and non-renewable sources," Int J Hydrogen Energy, vol. 39, no. 1, p.1–12, 2014.

DOI: 10.1016/j.ijhydene.2013.10.060

Google Scholar

[6] A. Marinkas et al., "Anion-conductive membranes based on 2-mesityl-benzimidazolium functionalised poly(2,6-dimethyl-1,4-phenylene oxide) and their use in alkaline water electrolysis," Polymer (Guildf), vol. 145, p.242–251, Jun. 2018.

DOI: 10.1016/j.polymer.2018.05.008

Google Scholar

[7] K. E. Ayers et al., "Characterization of Anion Exchange Membrane Technology for Low Cost Electrolysis," ECS Meeting Abstracts, vol. MA2012-01, no. 28, p.1102–1102, Feb. 2012.

DOI: 10.1149/MA2012-01/28/1102

Google Scholar

[8] N. Chen, S. Y. Paek, J. Y. Lee, J. H. Park, S. Y. Lee, and Y. M. Lee, "High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm −2 and a durability of 1000 hours," Energy Environ Sci, vol. 14, no. 12, p.6338–6348, 2021.

DOI: 10.1039/D1EE02642A

Google Scholar

[9] A. Manabe et al., "Basic study of alkaline water electrolysis," Electrochim Acta, vol. 100, no. 2013, p.249–256, Jun. 2013.

DOI: 10.1016/j.electacta.2012.12.105

Google Scholar

[10] M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, "A comprehensive review on PEM water electrolysis," Int J Hydrogen Energy, vol. 38, no. 12, p.4901–4934, Apr. 2013.

DOI: 10.1016/j.ijhydene.2013.01.151

Google Scholar

[11] A. Keçebaş, M. Kayfeci, and M. Bayat, "Electrochemical hydrogen generation," in Solar Hydrogen Production, Elsevier, 2019, pp.299-317.

DOI: 10.1016/B978-0-12-814853-2.00009-6

Google Scholar

[12] S. Shiva Kumar and V. Himabindu, "Hydrogen production by PEM water electrolysis – A review," Mater Sci Energy Technol, vol. 2, no. 3, p.442–454, Dec. 2019.

DOI: 10.1016/j.mset.2019.03.002

Google Scholar

[13] S. Krishnan, M. Fairlie, P. Andres, T. de Groot, and G. Jan Kramer, "Power to gas (H2): alkaline electrolysis," in Technological Learning in the Transition to a Low-Carbon Energy System, Elsevier, 2020, p.165–187.

DOI: 10.1016/B978-0-12-818762-3.00010-8

Google Scholar

[14] M. Schalenbach, G. Tjarks, M. Carmo, W. Lueke, M. Mueller, and D. Stolten, "Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis," J Electrochem Soc, vol. 163, no. 11, pp. F3197–F3208, Aug. 2016.

DOI: 10.1149/2.0271611jes

Google Scholar

[15] I. Dincer and A. A. AlZahrani, "4.25 Electrolyzers," in Comprehensive Energy Systems, vol. 4–5, Elsevier, 2018, p.985–1025.

DOI: 10.1016/B978-0-12-809597-3.00442-9

Google Scholar

[16] D. Burnat et al., "Composite membranes for alkaline electrolysis based on polysulfone and mineral fillers," J Power Sources, vol. 291, p.163–172, Sep. 2015.

DOI: 10.1016/j.jpowsour.2015.04.066

Google Scholar

[17] Z. Zakaria and S. K. Kamarudin, "A review of alkaline solid polymer membrane in the application of AEM electrolyzer: Materials and characterization," Int J Energy Res, vol. 45, no. 13, p.18337–18354, Oct. 2021.

DOI: 10.1002/er.6983

Google Scholar

[18] A. B. T. Nelabhotla, D. Pant, and C. Dinamarca, "Power-to-gas for methanation," in Emerging Technologies and Biological Systems for Biogas Upgrading, Elsevier, 2021, p.187–221.

DOI: 10.1016/B978-0-12-822808-1.00008-8

Google Scholar

[19] I. Dincer and C. Zamfirescu, "Hydrogen Production by Electrical Energy," in Sustainable Hydrogen Production, Elsevier, 2016, p.99–161.

DOI: 10.1016/B978-0-12-801563-6.00003-0

Google Scholar

[20] J. Dolci, F. Weidner, and E. Sensitive, "Historical Analysis of FCH 2 JU Electrolyser Projects," 2020.

Google Scholar

[21] J. Brauns and T. Turek, "Alkaline Water Electrolysis Powered by Renewable Energy: A Review," Processes, vol. 8, no. 2, p.248, Feb. 2020.

DOI: 10.3390/pr8020248

Google Scholar

[22] J. W. Haverkort and H. Rajaei, "Voltage losses in zero-gap alkaline water electrolysis," J Power Sources, vol. 497, no. January, p.229864, Jun. 2021.

DOI: 10.1016/j.jpowsour.2021.229864

Google Scholar

[23] B. G. Pollet, A. A. Franco, H. Su, H. Liang, and S. Pasupathi, "Proton exchange membrane fuel cells," in Compendium of Hydrogen Energy, Elsevier, 2016, p.3–56.

DOI: 10.1016/B978-1-78242-363-8.00001-3

Google Scholar

[24] W. Xu and K. Scott, "The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance," Int J Hydrogen Energy, vol. 35, no. 21, p.12029–12037, Nov. 2010.

DOI: 10.1016/j.ijhydene.2010.08.055

Google Scholar

[25] Y. Zhou, L. Sheng, Q. Luo, W. Zhang, and J. Yang, "Improving the Activity of Electrocatalysts toward the Hydrogen Evolution Reaction, the Oxygen Evolution Reaction, and the Oxygen Reduction Reaction via Modification of Metal and Ligand of Conductive Two-Dimensional Metal–Organic Frameworks," J Phys Chem Lett, vol. 12, no. 48, p.11652–11658, Dec. 2021.

DOI: 10.1021/acs.jpclett.1c03452

Google Scholar

[26] S. Grigoriev, V. Porembsky, and V. Fateev, "Pure hydrogen production by PEM electrolysis for hydrogen energy," Int J Hydrogen Energy, vol. 31, no. 2, p.171–175, Feb. 2006.

DOI: 10.1016/j.ijhydene.2005.04.038

Google Scholar

[27] P. Millet et al., "PEM water electrolyzers: From electrocatalysis to stack development," Int J Hydrogen Energy, vol. 35, no. 10, p.5043–5052, May 2010.

DOI: 10.1016/j.ijhydene.2009.09.015

Google Scholar

[28] M. Thema, F. Bauer, and M. Sterner, "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, vol. 112, no. May, p.775–787, Sep. 2019.

DOI: 10.1016/j.rser.2019.06.030

Google Scholar

[29] J. E. Park et al., "High-performance proton-exchange membrane water electrolysis using a sulfonated poly(arylene ether sulfone) membrane and ionomer," J Memb Sci, vol. 620, no. August 2020, p.118871, Feb. 2021.

DOI: 10.1016/j.memsci.2020.118871

Google Scholar

[30] G. Wei, L. Xu, C. Huang, and Y. Wang, "SPE water electrolysis with SPEEK/PES blend membrane," Int J Hydrogen Energy, vol. 35, no. 15, p.7778–7783, Aug. 2010.

DOI: 10.1016/j.ijhydene.2010.05.041

Google Scholar

[31] J. Han et al., "Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application," J Memb Sci, vol. 579, no. November 2018, p.70–78, Jun. 2019.

DOI: 10.1016/j.memsci.2019.02.048

Google Scholar

[32] A. Albert, T. Lochner, T. J. Schmidt, and L. Gubler, "Stability and Degradation Mechanisms of Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis," ACS Appl Mater Interfaces, vol. 8, no. 24, p.15297–15306, Jun. 2016.

DOI: 10.1021/acsami.6b03050

Google Scholar

[33] I. Vincent and D. Bessarabov, "Low cost hydrogen production by anion exchange membrane electrolysis: A review," Renewable and Sustainable Energy Reviews, vol. 81, p.1690–1704, Jan. 2018.

DOI: 10.1016/j.rser.2017.05.258

Google Scholar

[34] I. V. Pushkareva, A. S. Pushkarev, S. A. Grigoriev, P. Modisha, and D. G. Bessarabov, "Comparative study of anion exchange membranes for low-cost water electrolysis," Int J Hydrogen Energy, vol. 45, no. 49, p.26070–26079, Oct. 2020.

DOI: 10.1016/j.ijhydene.2019.11.011

Google Scholar

[35] I. Vincent, "Hydrogen Production by water Electrolysis with an Ultrathin Anion-exchange membrane (AEM)," Int J Electrochem Sci, vol. 13, no. 12, p.11347–11358, Dec. 2018.

DOI: 10.20964/2018.12.84

Google Scholar

[36] X. Wu and K. Scott, "A polymethacrylate-based quaternary ammonium OH− ionomer binder for non-precious metal alkaline anion exchange membrane water electrolysers," J Power Sources, vol. 214, p.124–129, Sep. 2012.

DOI: 10.1016/j.jpowsour.2012.03.069

Google Scholar

[37] B. Motealleh, Z. Liu, R. I. Masel, J. P. Sculley, Z. Richard Ni, and L. Meroueh, "Next-generation anion exchange membrane water electrolyzers operating for commercially relevant lifetimes," Int J Hydrogen Energy, vol. 46, no. 5, p.3379–3386, Jan. 2021.

DOI: 10.1016/j.ijhydene.2020.10.244

Google Scholar

[38] K. Ayers, N. Danilovic, R. Ouimet, M. Carmo, B. Pivovar, and M. Bornstein, "Perspectives on Low-Temperature Electrolysis and Potential for Renewable Hydrogen at Scale," Annu Rev Chem Biomol Eng, vol. 10, no. 1, p.219–239, Jun. 2019.

DOI: 10.1146/annurev-chembioeng-060718-030241

Google Scholar

[39] N. Ramaswamy and S. Mukerjee, "Alkaline Anion-Exchange Membrane Fuel Cells: Challenges in Electrocatalysis and Interfacial Charge Transfer.," Chem Rev, vol. 119, no. 23, p.11945–11979, Dec. 2019.

DOI: 10.1021/acs.chemrev.9b00157

Google Scholar

[40] D. Xu et al., "Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis: Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells," ACS Catal, vol. 9, no. 1, p.7–15, Jan. 2019.

DOI: 10.1021/acscatal.8b04001

Google Scholar

[41] M. Manolova et al., "Development and testing of an anion exchange membrane electrolyser," Int J Hydrogen Energy, vol. 40, no. 35, p.11362–11369, Sep. 2015.

DOI: 10.1016/j.ijhydene.2015.04.149

Google Scholar

[42] S. Seetharaman, R. Balaji, K. Ramya, K. S. Dhathathreyan, and M. Velan, "Graphene oxide modified non-noble metal electrode for alkaline anion exchange membrane water electrolyzers," Int J Hydrogen Energy, vol. 38, no. 35, p.14934–14942, Nov. 2013.

DOI: 10.1016/j.ijhydene.2013.09.033

Google Scholar

[43] G. Merle, M. Wessling, and K. Nijmeijer, "Anion exchange membranes for alkaline fuel cells: A review," J Memb Sci, vol. 377, no. 1–2, p.1–35, Jul. 2011.

DOI: 10.1016/j.memsci.2011.04.043

Google Scholar

[44] I. Vincent, A. Kruger, and D. Bessarabov, "Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis," Int J Hydrogen Energy, vol. 42, no. 16, p.10752–10761, Apr. 2017.

DOI: 10.1016/j.ijhydene.2017.03.069

Google Scholar

[45] M. Treichel, J. C. Gaitor, C. Birch, J. L. Vinskus, and K. J. T. Noonan, "Anion-exchange membranes derived from main group and metal-based cations," Polymer (Guildf), vol. 249, p.124811, May 2022.

DOI: 10.1016/j.polymer.2022.124811

Google Scholar

[46] W. You, K. J. T. Noonan, and G. W. Coates, "Alkaline-stable anion exchange membranes: A review of synthetic approaches," Prog Polym Sci, vol. 100, p.101177, Jan. 2020.

DOI: 10.1016/j.progpolymsci.2019.101177

Google Scholar

[47] G. Couture, A. Alaaeddine, F. Boschet, and B. Ameduri, "Polymeric materials as anion-exchange membranes for alkaline fuel cells," Prog Polym Sci, vol. 36, no. 11, p.1521–1557, Nov. 2011.

DOI: 10.1016/j.progpolymsci.2011.04.004

Google Scholar

[48] D. Chen and M. A. Hickner, "Degradation of Imidazolium- and Quaternary Ammonium-Functionalized Poly(fluorenyl ether ketone sulfone) Anion Exchange Membranes," ACS Appl Mater Interfaces, vol. 4, no. 11, p.5775–5781, Nov. 2012.

DOI: 10.1021/am301557w

Google Scholar

[49] A. M. Park, R. J. Wycisk, X. Ren, F. E. Turley, and P. N. Pintauro, "Crosslinked poly(phenylene oxide)-based nanofiber composite membranes for alkaline fuel cells," J Mater Chem A Mater, vol. 4, no. 1, p.132–141, 2016.

DOI: 10.1039/C5TA06209H

Google Scholar

[50] M. D. T. Nguyen, S. Yang, and D. Kim, "Pendant dual sulfonated poly(arylene ether ketone) proton exchange membranes for fuel cell application," J Power Sources, vol. 328, p.355–363, Oct. 2016.

DOI: 10.1016/j.jpowsour.2016.08.041

Google Scholar

[51] Z. Li et al., "Preparing alkaline anion exchange membrane with enhanced hydroxide conductivity via blending imidazolium-functionalized and sulfonated poly(ether ether ketone)," J Power Sources, vol. 288, p.384–392, Aug. 2015.

DOI: 10.1016/j.jpowsour.2015.04.112

Google Scholar

[52] P. T. Nonjola, M. K. Mathe, and R. M. Modibedi, "Chemical modification of polysulfone: Composite anionic exchange membrane with TiO2 nano-particles," Int J Hydrogen Energy, vol. 38, no. 12, p.5115–5121, Apr. 2013.

DOI: 10.1016/j.ijhydene.2013.02.028

Google Scholar

[53] A. A. Mohamad and A. K. Arof, "Plasticized alkaline solid polymer electrolyte system," Mater Lett, vol. 61, no. 14–15, p.3096–3099, Jun. 2007.

DOI: 10.1016/j.matlet.2006.11.030

Google Scholar

[54] S. Sang, J. Zhang, Q. Wu, and Y. Liao, "Influences of Bentonite on conductivity of composite solid alkaline polymer electrolyte PVA-Bentonite-KOH-H2O," Electrochim Acta, vol. 52, no. 25, p.7315–7321, Sep. 2007.

DOI: 10.1016/j.electacta.2007.06.004

Google Scholar

[55] Y. Li, S. Shi, H. Cao, Z. Zhao, and H. Wen, "Modification and properties characterization of heterogeneous anion-exchange membranes by electrodeposition of graphene oxide (GO)," Appl Surf Sci, vol. 442, p.700–710, Jun. 2018.

DOI: 10.1016/j.apsusc.2018.02.166

Google Scholar

[56] Y.-C. Cao, X. Wu, and K. Scott, "A quaternary ammonium grafted poly vinyl benzyl chloride membrane for alkaline anion exchange membrane water electrolysers with no-noble-metal catalysts," Int J Hydrogen Energy, vol. 37, no. 12, p.9524–9528, Jun. 2012.

DOI: 10.1016/j.ijhydene.2012.03.116

Google Scholar

[57] S.-C. Jang, F.-S. Chuang, W.-C. Tsen, and T.-W. Kuo, "Quaternized chitosan/functionalized carbon nanotubes composite anion exchange membranes," J Appl Polym Sci, vol. 136, no. 30, p.47778, Aug. 2019.

DOI: 10.1002/app.47778

Google Scholar

[58] R. Kannan, P. P. Aher, T. Palaniselvam, S. Kurungot, U. K. Kharul, and V. K. Pillai, "Artificially Designed Membranes Using Phosphonated Multiwall Carbon Nanotube−Polybenzimidazole Composites for Polymer Electrolyte Fuel Cells," J Phys Chem Lett, vol. 1, no. 14, p.2109–2113, Jul. 2010.

DOI: 10.1021/jz1007005

Google Scholar

[59] R. Kannan, B. A. Kakade, and V. K. Pillai, "Polymer Electrolyte Fuel Cells Using Nafion-Based Composite Membranes with Functionalized Carbon Nanotubes," Angewandte Chemie International Edition, vol. 47, no. 14, p.2653–2656, Mar. 2008.

DOI: 10.1002/anie.200704343

Google Scholar

[60] X. L. Xie, Y. W. Mai, and X. P. Zhou, "Dispersion and alignment of carbon nanotubes in polymer matrix: A review," Materials Science and Engineering R: Reports, vol. 49, no. 4. Elsevier Ltd, p.89–112, May 19, 2005.

DOI: 10.1016/j.mser.2005.04.002

Google Scholar

[61] O. Movil, L. Frank, and J. A. Staser, "Graphene Oxide–Polymer Nanocomposite Anion-Exchange Membranes," J Electrochem Soc, vol. 162, no. 4, pp. F419–F426, Jan. 2015.

DOI: 10.1149/2.0681504jes

Google Scholar

[62] T. Sata, M. Tsujimoto, T. Yamaguchi, and K. Matsusaki, "Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature," J Memb Sci, vol. 112, no. 2, p.161–170, Apr. 1996.

DOI: 10.1016/0376-7388(95)00292-8

Google Scholar

[63] F. Zhang, H. Zhang, and C. Qu, "Imidazolium functionalized polysulfone anion exchange membrane for fuel cell application," J Mater Chem, vol. 21, no. 34, p.12744, 2011.

DOI: 10.1039/c1jm10656b

Google Scholar

[64] Q. Zhang, S. Li, and S. Zhang, "A novel guanidinium grafted poly(aryl ether sulfone) for high-performance hydroxide exchange membranes," Chemical Communications, vol. 46, no. 40, p.7495, 2010.

DOI: 10.1039/c0cc01834a

Google Scholar

[65] K. K. Stokes, J. A. Orlicki, and F. L. Beyer, "RAFT polymerization and thermal behavior of trimethylphosphonium polystyrenes for anion exchange membranes," Polym. Chem., vol. 2, no. 1, p.80–82, 2011.

DOI: 10.1039/C0PY00293C

Google Scholar

[66] K. Yamamoto, E. Shouji, F. Suzuki, S. Kobayashi, and E. Tsuchida, "Synthesis of Poly(sulfonium cation) by Oxidative Polymerization of Aryl Alkyl Sulfides," J Org Chem, vol. 60, no. 2, p.452–453, Jan. 1995.

DOI: 10.1021/jo00107a027

Google Scholar

[67] D. Henkensmeier, M. Najibah, C. Harms, J. Žitka, J. Hnát, and K. Bouzek, "Overview: State-of-the Art Commercial Membranes for Anion Exchange Membrane Water Electrolysis," Journal of Electrochemical Energy Conversion and Storage, vol. 18, no. 2, May 2021.

DOI: 10.1115/1.4047963

Google Scholar

[68] D. Ion-Ebrasu et al., "Graphene inclusion effect on anion-exchange membranes properties for alkaline water electrolyzers," Int J Hydrogen Energy, vol. 45, no. 35, p.17057–17066, Jul. 2020.

DOI: 10.1016/j.ijhydene.2020.04.195

Google Scholar

[69] I. Arunkumar, A. R. Kim, S. H. Lee, and D. J. Yoo, "Enhanced fumion nanocomposite membranes embedded with graphene oxide as a promising anion exchange membrane for fuel cell application," Int J Hydrogen Energy, 2022.

DOI: 10.1016/j.ijhydene.2022.10.184

Google Scholar

[70] http://en.scimaterials.cn/ProDetail.aspx?ProId=361 accessed 02/28/(2023)

Google Scholar

[71] https://www.sigmaaldrich.com/IT/it/search/chitosan?facet=facet_related_category%3ABiomedical%20Polymers&focus=products&page=1&perpage=30&sort=relevance&term=chitosan&type=product accessed 02/28/(2023)

Google Scholar

[72] D. Pletcher and X. Li, "Prospects for alkaline zero gap water electrolysers for hydrogen production," Int J Hydrogen Energy, vol. 36, no. 23, p.15089–15104, 2011.

DOI: 10.1016/j.ijhydene.2011.08.080

Google Scholar

[73] Y. Leng, G. Chen, A. J. Mendoza, T. B. Tighe, M. A. Hickner, and C.-Y. Wang, "Solid-State Water Electrolysis with an Alkaline Membrane," J Am Chem Soc, vol. 134, no. 22, p.9054–9057, Jun. 2012.

DOI: 10.1021/ja302439z

Google Scholar

[74] S. Seetharaman, R. Balaji, K. Ramya, K. S. Dhathathreyan, and M. Velan, "Graphene oxide modified non-noble metal electrode for alkaline anion exchange membrane water electrolyzers," Int J Hydrogen Energy, vol. 38, no. 35, p.14934–14942, Nov. 2013

DOI: 10.1016/j.ijhydene.2013.09.033

Google Scholar

[75] Z. Liu, S. D. Sajjad, Y. Gao, H. Yang, J. J. Kaczur, and R. I. Masel, "The effect of membrane on an alkaline water electrolyzer," Int J Hydrogen Energy, vol. 42, no. 50, p.29661–29665, Dec. 2017.

DOI: 10.1016/j.ijhydene.2017.10.050

Google Scholar