[1]
P. Zhang, C. Yang, Y. Xu, H. Li, W. Shi, X. Xie, M. Lu, L. Huang, W. Huang, Accelerating the startup of microbial fuel cells by facile microbial acclimation, Bioresource Technology Reports, 8 (2019) 100347.
DOI: 10.1016/j.biteb.2019.100347
Google Scholar
[2]
K. Sakai, S. Iwamura, R. Sumida, I. Ogino, S.R. Mukai, Carbon Paper with a High Surface Area Prepared from Carbon Nanofibers Obtained through the Liquid Pulse Injection Technique, ACS Omega, 3 (2018) 691-697.
DOI: 10.1021/acsomega.7b01822
Google Scholar
[3]
S. Li, C. Cheng, A. Thomas, Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts, Advanced Materials, 29 (2017) 1602547.
DOI: 10.1002/adma.201602547
Google Scholar
[4]
A.A. Yaqoob;, M.N.M. Ibrahim;, M.Rafatullah;, Y.S. Chua;, A.Ahmad;, K. Umar, Recent Advances in Anodes for Microbial Fuel Cells: An Overview, Materials (Basel), 13 (2020).
DOI: 10.3390/ma13092078
Google Scholar
[5]
Α. Tremouli, T. Kamperidis, P.K. Pandis, Ch. Argirusis, G. Lyberatos, Exploitation of digestate from thermophilic and mesophilic anaerobic digesters fed with fermentable food waste using the MFC technology, Waste and Biomass Valorization, (2021).
DOI: 10.1007/s12649-021-01414-0
Google Scholar
[6]
P. Liang, J. Wei, M. Li, X. Huang, Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode, Frontiers of Environmental Science & Engineering, 7 (2013) 913-919.
DOI: 10.1007/s11783-013-0583-3
Google Scholar
[7]
B.E. Logan, M.J. Wallack, K.-Y. Kim, W. He, Y. Feng, P.E. Saikaly, Assessment of Microbial Fuel Cell Configurations and Power Densities, Environmental Science & Technology Letters, 2 (2015) 206-214.
DOI: 10.1021/acs.estlett.5b00180
Google Scholar
[8]
V. Lanas, Y. Ahn, B.E. Logan, Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode, Journal of Power Sources, 247 (2014) 228-234.
DOI: 10.1016/j.jpowsour.2013.08.110
Google Scholar
[9]
J. Wei, P. Liang, X. Huang, Recent progress in electrodes for microbial fuel cells, Bioresource Technology, 102 (2011) 9335-9344.
DOI: 10.1016/j.biortech.2011.07.019
Google Scholar
[10]
G.G. kumar, V.G.S. Sarathi, K.S. Nahm, Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells, Biosensors and Bioelectronics, 43 (2013) 461-475.
DOI: 10.1016/j.bios.2012.12.048
Google Scholar
[11]
Y. Hindatu, M.S.M. Annuar, A.M. Gumel, Mini-review: Anode modification for improved performance of microbial fuel cell, Renewable and Sustainable Energy Reviews, 73 (2017) 236-248.
DOI: 10.1016/j.rser.2017.01.138
Google Scholar
[12]
D. Sauerteig, N. Hanselmann, A. Arzberger, H. Reinshagen, S. Ivanov, A. Bund, Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries, Journal of Power Sources, 378 (2018) 235-247.
DOI: 10.1016/j.jpowsour.2017.12.044
Google Scholar
[13]
M.I. Din, M. Iqbal, Z. Hussain, R. Khalid, Bioelectricity generation from waste potatoes using single chambered microbial fuel cell, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, (2020) 1-11.
DOI: 10.1080/15567036.2020.1797944
Google Scholar
[14]
A.A. Yaqoob, M.N.M. Ibrahim, S. Rodríguez-Couto, Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): An overview, Biochemical Engineering Journal, 164 (2020) 107779.
DOI: 10.1016/j.bej.2020.107779
Google Scholar
[15]
P.J. Brigandi, J.M. Cogen, R.A. Pearson, Electrically conductive multiphase polymer blend carbon-based composites, Polymer Engineering & Science, 54 (2014) 1-16.
DOI: 10.1002/pen.23530
Google Scholar
[16]
B.G. Compton, J.A. Lewis, 3D-Printing of Lightweight Cellular Composites, Advanced Materials, 26 (2014) 5930-5935.
DOI: 10.1002/adma.201401804
Google Scholar
[17]
S. Dul, B.J.A. Gutierrez, A. Pegoretti, J. Alvarez-Quintana, L. Fambri, 3D printing of ABS Nanocomposites. Comparison of processing and effects of multi-wall and single-wall carbon nanotubes on thermal, mechanical and electrical properties, Journal of Materials Science & Technology, 121 (2022) 52-66.
DOI: 10.1016/j.jmst.2021.11.064
Google Scholar
[18]
J. Ouyang, Recent Advances of Intrinsically Conductive Polymers, Acta Physico-Chimica Sinica, 34 (2018) 1211-1220.
Google Scholar
[19]
B. Podsiadły, P. Matuszewski, A. Skalski, M. Słoma, Carbon Nanotube-Based Composite Filaments for 3D Printing of Structural and Conductive Elements, Applied Sciences, 11 (2021) 1272.
DOI: 10.3390/app11031272
Google Scholar
[20]
Sachin C. Kulkarni, Jitendra Singh, D.K. Shinde, Mechanical and Electrical Properties of Carbon Nanotubes Based Acrylonitrile Butadiene Styrene Nanocomposite Fabricated Using Fused Deposition Method, in: SAMPE 2019, CHARLOTTE, NC 2019.
DOI: 10.33599/nasampe/s.19.1406
Google Scholar
[21]
P.K. Pandis, S. Papaioannou, M.K. Koukou, M.G. Vrachopoulos, V.N. Stathopoulos, Differential scanning calorimetry based evaluation of 3D printed PLA for phase change materials encapsulation or as container material of heat storage tanks, in: 2nd International Conference on Sustainable Energy and Resource Use in Food Chains, ICSEF 2018, Paphos, Cyprus, 2018.
DOI: 10.1016/j.egypro.2019.02.088
Google Scholar
[22]
O. Luzanin, D. Movrin, V. Stathopoulos, P. Pandis, T. Radusin, V. Guduric, Impact of processing parameters on tensile strength, in-process crystallinity and mesostructure in FDM-fabricated PLA specimens, Rapid Prototyping Journal, 25 (2019) 1398-1410.
DOI: 10.1108/rpj-12-2018-0316
Google Scholar
[23]
P.K. Pandis, T. Kamperidis, K. Bariamis, I. Vlachos, C. Argirusis, V.N. Stathopoulos, G. Lyberatos, A. Tremouli, Comparative Study of Different Production Methods of Activated Carbon Cathodic Electrodes in Single Chamber MFC Treating Municipal Landfill Leachate, Applied Sciences, 12 (2022) 2991.
DOI: 10.3390/app12062991
Google Scholar
[24]
T. Kamperidis, P.K. Pandis, C. Argirusis, G. Lyberatos, A. Tremouli, Effect of Food Waste Condensate Concentration on the Performance of Microbial Fuel Cells with Different Cathode Assemblies, Sustainability, 14 (2022) 2625.
DOI: 10.3390/su14052625
Google Scholar
[25]
A. Tremouli, P.K. Pandis, T. Kamperidis, V.N. Stathopoulos, C. Argirusis, G. Lyberatos, Performance assessment of a four-air cathode membraneless microbial fuel cell stack for wastewater treatment and energy extraction, E3S Web of Conferences, 116 (2019) 00093.
DOI: 10.1051/e3sconf/201911600093
Google Scholar
[26]
Α. Tremouli, P.K. Pandis, I. Karydogiannis, V.N. Stathopoulos, C. Argirusis, G. Lyberatos, Operation and Electro(chemical) characterization of a microbial fuel cell stack fed with fermentable household waste extract, Global NEST Journal, 21 (2019) 253-257.
DOI: 10.1016/j.egypro.2019.02.051
Google Scholar
[27]
S. Dul, L. Fambri, A. Pegoretti, Filaments Production and Fused Deposition Modelling of ABS/Carbon Nanotubes Composites, Nanomaterials (Basel), 8 (2018).
DOI: 10.3390/nano8010049
Google Scholar
[28]
X. Liu, Q. Zou, T. Wang, L. Zhang, Electrically Conductive Graphene-Based Biodegradable Polymer Composite Films with High Thermal Stability and Flexibility, Nano, 13 (2018) 1850033.
DOI: 10.1142/s1793292018500339
Google Scholar
[29]
H.K. Sezer, O. Eren, FDM 3D printing of MWCNT re-inforced ABS nano-composite parts with enhanced mechanical and electrical properties, Journal of Manufacturing Processes, 37 (2019) 339-347.
DOI: 10.1016/j.jmapro.2018.12.004
Google Scholar