[1]
M. Z. Jacobson, "Review of solutions to global warming, air pollution, and energy security," Energy Environ. Sci., vol. 2, no. 2, p.148–173, 2009.
DOI: 10.1039/B809990C
Google Scholar
[2]
M. Tawalbeh, M. Al-Ismaily, B. Kruczek, and F. H. Tezel, "Modeling the transport of CO2, N2, and their binary mixtures through highly permeable silicalite-1 membranes using Maxwell−Stefan equations," Chemosphere, vol. 263, p.127935, Jan. 2021.
DOI: 10.1016/j.chemosphere.2020.127935
Google Scholar
[3]
A. Haddad, H. Jaber, M. Khaled, R. Al Afif, and M. Ramadan, "An investigation on coupling fuel cell, wind turbine and PV as green to green system," Int. J. Hydrogen Energy, Jul. 2022.
DOI: 10.1016/j.ijhydene.2022.06.107
Google Scholar
[4]
M. Tawalbeh, H. A. Khan, and A. Al-Othman, "Insights on the applications of metal oxide nanosheets in energy storage systems," J. Energy Storage, vol. 60, p.106656, Apr. 2023.
DOI: 10.1016/j.est.2023.106656
Google Scholar
[5]
W. Nimir et al., "Approaches towards the development of heteropolyacid-based high temperature membranes for PEM fuel cells," Int. J. Hydrogen Energy, no. In Press, https://doi.org/10.1016/j.ijhydene.2021.11.174, 2021.
DOI: 10.1016/j.ijhydene.2021.11.174
Google Scholar
[6]
M. Tawalbeh, S. Alarab, A. Al-Othman, and R. M. N. Javed, "The Operating Parameters, Structural Composition, and Fuel Sustainability Aspects of PEM Fuel Cells: A Mini Review," Fuels, vol. 3, no. 3, p.449–474, Aug. 2022.
DOI: 10.3390/fuels3030028
Google Scholar
[7]
H. Alnaqbi, E. T. Sayed, S. Al-Asheh, A. Bahaa, H. Alawadhi, and M. A. Abdelkareem, "Current progression in graphene-based membranes for low temperature fuel cells," Int. J. Hydrogen Energy, May 2022.
DOI: 10.1016/j.ijhydene.2022.03.255
Google Scholar
[8]
A. Ka'ki, A. Alraeesi, A. Al-Othman, and M. Tawalbeh, "Proton conduction of novel calcium phosphate nanocomposite membranes for high temperature PEM fuel cells applications," Int. J. Hydrogen Energy, vol. 46, no. 59, p.30641–30657, 2021.
DOI: 10.1016/j.ijhydene.2021.01.013
Google Scholar
[9]
M. Tawalbeh, A. Al-Othman, A. Ka'ki, A. Farooq, and M. Alkasrawi, "Lignin/zirconium phosphate/ionic liquids-based proton conducting membranes for high-temperature PEM fuel cells applications," Energy, vol. 260, p.125237, Dec. 2022.
DOI: 10.1016/j.energy.2022.125237
Google Scholar
[10]
R. M. Nauman Javed, A. Al-Othman, P. Nancarrow, and M. Tawalbeh, "Zirconium silicate-ionic liquid membranes for high-temperature hydrogen PEM fuel cells," Int. J. Hydrogen Energy, 2022.
DOI: 10.1016/j.ijhydene.2022.05.009
Google Scholar
[11]
R. M. Nauman Javed, A. Al-Othman, M. Tawalbeh, and A. G. Olabi, "Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications," Renew. Sustain. Energy Rev., vol. 168, p.112836, Oct. 2022.
DOI: 10.1016/j.rser.2022.112836
Google Scholar
[12]
P. Sun, Z. Li, M. Song, S. Wang, X. Yin, and Y. Wang, "Preparation and characterization of zirconium phytate as a novel solid intermediate temperature proton conductor," Mater. Lett., vol. 191, p.161–164, Mar. 2017.
DOI: 10.1016/j.matlet.2016.12.076
Google Scholar
[13]
Y. Lv, Z. Li, M. Song, P. Sun, X. Yin, and S. Wang, "Preparation and properties of ZrPA doped CMPSU cross-linked PBI based high temperature and low humidity proton exchange membranes," React. Funct. Polym., vol. 137, p.57–70, Apr. 2019.
DOI: 10.1016/j.reactfunctpolym.2019.01.014
Google Scholar
[14]
M. Kourasi, R. G. A. Wills, A. A. Shah, and F. C. Walsh, "Heteropolyacids for fuel cell applications," Electrochim. Acta, vol. 127, p.454–466, May 2014.
DOI: 10.1016/j.electacta.2014.02.006
Google Scholar
[15]
X.-M. Yan, P. Mei, Y. Mi, L. Gao, and S. Qin, "Proton exchange membrane with hydrophilic capillaries for elevated temperature PEM fuel cells," Electrochem. commun., vol. 11, no. 1, p.71–74, Jan. 2009.
DOI: 10.1016/j.elecom.2008.10.040
Google Scholar
[16]
Y.-S. Ye, J. Rick, and B.-J. Hwang, "Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells," Polymers (Basel)., vol. 4, no. 2, p.913–963, Mar. 2012.
DOI: 10.3390/polym4020913
Google Scholar
[17]
A. Alashkar, A. Al-Othman, M. Tawalbeh, and M. Qasim, "A Critical Review on the Use of Ionic Liquids in Proton Exchange Membrane Fuel Cells," Membranes (Basel)., vol. 12, no. 2, p.178, Feb. 2022.
DOI: 10.3390/membranes12020178
Google Scholar
[18]
A. Eisa, A. Al-Othman, M. Al-Sayah, and M. Tawalbeh, "Novel Composite Membranes Based on Polyaniline/Ionic Liquids for PEM Fuel Cells Applications," Key Eng. Mater., vol. 865, p.55–60, Sep. 2020.
DOI: 10.4028/www.scientific.net/KEM.865.55
Google Scholar
[19]
M. Díaz, A. Ortiz, and I. Ortiz, "Progress in the use of ionic liquids as electrolyte membranes in fuel cells," J. Memb. Sci., vol. 469, p.379–396, Nov. 2014.
DOI: 10.1016/j.memsci.2014.06.033
Google Scholar
[20]
J. Yang, Y. Wang, G. Yang, and S. Zhan, "New anhydrous proton exchange membranes based on fluoropolymers blend imidazolium poly (aromatic ether ketone)s for high temperature polymer electrolyte fuel cells," Int. J. Hydrogen Energy, vol. 43, no. 17, p.8464–8473, Apr. 2018.
DOI: 10.1016/j.ijhydene.2018.03.128
Google Scholar
[21]
J. Fang, M. Lyu, X. Wang, Y. Wu, and J. Zhao, "Synthesis and performance of novel anion exchange membranes based on imidazolium ionic liquids for alkaline fuel cell applications," J. Power Sources, vol. 284, p.517–523, Jun. 2015.
DOI: 10.1016/j.jpowsour.2015.03.065
Google Scholar
[22]
H. Mohammed, A. Al-Othman, P. Nancarrow, Y. Elsayed, and M. Tawalbeh, "Enhanced proton conduction in zirconium phosphate/ionic liquids materials for high-temperature fuel cells," Int. J. Hydrogen Energy, vol. 46, no. 6, 2021.
DOI: 10.1016/j.ijhydene.2019.09.118
Google Scholar
[23]
A. Al-Othman et al., "Novel composite membrane based on zirconium phosphate-ionic liquids for high temperature PEM fuel cells," Int. J. Hydrogen Energy, vol. 46, no. 8, p.6100–6109, Jan. 2021.
DOI: 10.1016/j.ijhydene.2020.02.112
Google Scholar
[24]
H.-Y. Lee, S.-K. Kim, M.-R. Lee, D.-H. Peck, Y. C. Kang, and C.-S. Kim, "Reduced mass transport resistance in polymer electrolyte membrane fuel cell by polyethylene glycol addition to catalyst ink," Int. J. Hydrogen Energy, vol. 44, no. 1, p.354–361, Jan. 2019.
DOI: 10.1016/j.ijhydene.2018.08.134
Google Scholar