The Liquid Fraction of ZA27 Zinc Alloy from TLP Diffusion Bonding Affecting Mechanical Properties and Microstructural Characterizations of SSC-ADC12 Aluminum Alloy

Article Preview

Abstract:

This work investigated liquid fraction in ZA27 zinc alloy interlayered with SSC-ADC12 aluminum alloy workpieces for Transient Liquid Phase (TLP) diffusion bonding. The results clearly indicated that liquid fraction had a necessary influence on TLP diffusion bonding. In other words, the high liquid fraction and bonding time tends to produce excellent bond strength. The maximum bond strength at 27.21 MPa was from 100% liquid fraction and 90 min from bonding time. The hardness increased by approximately 23.36% comparing to SSC-ADC12 aluminum alloy and by 11.18% comparing to the ZA27 zinc alloy. The microstructure was homogeneous in the bond line and formed to MgZn2 and CuZn4 intermetallic compound under Scanning Electron Microscope. According to Energy Dispersive X-Ray Spectrometer analysis, Zn atoms had the ability to move about 4.381 mm from the bond line and the elements' uniform distribution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-17

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Bakhtiari, A. Ekrami, Mater. Des. 40 (2012) pp.130-137.

Google Scholar

[2] A. AlHazaa, T.I. Khan, I. Haq, Mater. Charact. 61 (2010) pp.312-317.

Google Scholar

[3] Anas M. Atieh, Marcelo Epstein, Mater. Today Commun. 25 (2020) 101481.

Google Scholar

[4] C. Meengam, Y. Dunyakul, D. Maunkhaw, S. Chainarong, Metals. 8 (2018) pp.1-13.

Google Scholar

[5] E. Lugscheider, K. Bobzin, A. Erdle, Surf. Coat. Technol. 174-175 (2003) pp.704-707.

Google Scholar

[6] Mohammad Ali Karimi, Morteza Shamanian, Mohammad Hossein Enayati, Trans. Nonferrous Met. Soc. China. 31(10) (2021) pp.3063-3074.

Google Scholar

[7] Lin Yuan, Jiangtao Xiong, Jin Ren, Yajie Du, Jinglong Li, Mater. Charact. 178 (2021) 111292.

Google Scholar

[8] M. Soltani Samani, A. Bahrami, F. Karimzadeh, Mater. Today Commun. 21 (2019) 100619.

Google Scholar

[9] A. Malekan, S.E. Mirsalehi, M. Farvizi, N. Saito, K. Nakashima, Trans. Nonferrous Met. Soc. China. 32(5) (2022) pp.1548-1558.

DOI: 10.1016/s1003-6326(22)65892-8

Google Scholar

[10] Zhiyu Chang, Xingchen Wang, Yujuan Wu, Liming Peng, Wenjiang Ding, Mater. Lett. 282 (2021) 128835.

Google Scholar

[11] Wenying Qu, Juan Chen, Zhong Li, Min Luo, Hongxing Lu, Xiaogang Hu, Qiang Zhu, Mater. Lett. 220 (2022) 114932.

Google Scholar

[12] Suppachai Chainarong, Rapeepan Pitakaso, Worapot Sirirak, Thanatkij Srichok, Surajet Khonjun, Kanchana Sethanan, Thai Sangthean, J. Manuf. Mater. Process. 5(4) (2021) 123.

DOI: 10.3390/jmmp5040123

Google Scholar

[13] Nai-yong LI, Wei-min Mao, Xiao-xin Geng, Trans. Nonferrous Met. Soc. China. 32(3) (2022) pp.739-749.

Google Scholar

[14] J. Wannasin, R. Canyook, S. Wisutmethangoon, M.C. Flemings, Acta Mater. 61 (2013) pp.3897-3903.

DOI: 10.1016/j.actamat.2013.03.029

Google Scholar

[15] Hengyu Zhao, Satoshi Uda, Kensaku Maeda, Jun Nozawa, Haruhiko Koizumi, Kozo Fujiwara, J. Cryst. Growth. 415 (2015) pp.111-117.

Google Scholar

[16] Hongqiang Zhang, Junliang Xue, Yu Ye, Hailin Bai, Wei Guo, Guisheng Zou, Lei Liu, J. Alloys Compd. 909 (2022) 164692.

Google Scholar

[17] Song-Mao Liang, Rainer Schmid-Fetzer, Calphad: Comput. Coupling Ph. Diagr. Thermochem. 52 (2016) pp.21-37.

Google Scholar

[18] H. Nami, A. Halvaee, H. Adgi, Mater. Des. 32 (2011) pp.3957-3965.

Google Scholar

[19] M. Mazar Atabaki, J. Idris, Mater. Des. 34 (2012) pp.832-841.

Google Scholar

[20] Y.J. Jin, T.I. Khan, Mater. Des. 38 (2012) pp.32-37.

Google Scholar

[21] M.S. Kenevisi, S.M. Mousavi Khoie, Mater. Des. 38 (2012) pp.19-25.

Google Scholar