[1]
Y. Frank Cheng, Stress Corrosion Cracking of Pipelines, First, John Wiley & Sons, Hoboken, 2013.
Google Scholar
[2]
M.B. Zamora, R. Galván-Martínez, A. Carmona, M. Baltazar, A. Contreras, R. Orozco-Cruz, Stress Corrosion Cracking of X70 Pipeline Steel Immersed in Synthetic Soil Solution, AFINIDAD. 76 (2019) 52–62. https://www.researchgate.net/publication/346115287.
Google Scholar
[3]
A. Contreras, M. Salazar, A. Carmona, R. Galván-Martínez, Electrochemical noise for detection of stress corrosion cracking of low carbon steel exposed to synthetic soil solution, in: Materials Research, Universidade Federal de Sao Carlos, 2017: p.1201–1210.
DOI: 10.1590/1980-5373-MR-2016-0183
Google Scholar
[4]
O.I. Zvirko, S.F. Savula, V.M. Tsependa, G. Gabetta, H.M. Nykyforchyn, Stress corrosion cracking of gas pipeline steels of different strength, in: Procedia Structural Integrity, Elsevier B.V., 2016: p.509–516.
DOI: 10.1016/j.prostr.2016.06.066
Google Scholar
[5]
R.I. Bogdanov, E.M. Gutman, I. V Ryakhovskikh, Y.B. Unigovski, R.Z. Shneck, Stress corrosion cracking of pipeline steels in near-neutral-pH solutions: the role of mechanochemical and chemomechanical effects, AIMS Mater Sci. 6 (2019) 1065–1085.
DOI: 10.3934/matersci.2019.6.1065
Google Scholar
[6]
A. Alsit, M. Alkhedher, H. Hamdan, Crack Propagation in Pipelines Under Extreme Conditions of Near-Neutral PH SCC, Computers, Materials and Continua. 73 (2022) 5315–5329.
DOI: 10.32604/cmc.2022.031042
Google Scholar
[7]
B.Y. Fang, E.H. Han, J.Q. Wang, W. Ke, Stress corrosion cracking of X-70 pipeline steel in near neutral pH solution subjected to constant load and cyclic load testing, Corrosion Engineering, Science and Technology. 42 (2007) 123–129.
DOI: 10.1179/174327807X196843
Google Scholar
[8]
R.N. Parkins, Current Topics in Corrosion: Factors Influencing Stress Corrosion Crack Growth Kinetics, Corrosion. 43 (1987) 130–139.
DOI: 10.5006/1.3583125
Google Scholar
[9]
R. Duddu, N. Kota, S.M. Qidwai, An Extended Finite Element Method Based Approach for Modeling Crevice and Pitting Corrosion, J Appl Mech. 83 (2016).
DOI: 10.1115/1.4033379
Google Scholar
[10]
R. Bashir, H. Xue, R. Guo, Y. Bi, M. Usman, Interaction of Cyclic Loading (Low-Cyclic Fatigue) with Stress Corrosion Cracking (SCC) Growth Rate, Advances in Materials Science and Engineering. 2020 (2020) 10.
DOI: 10.1155/2020/8026372
Google Scholar
[11]
A. Sainz-Rosales, X. Ocampo-Lazcarro, A. Hernández-Pérez, A.G. González-Gutiérrez, E.R. Larios-Durán, C. Ponce de León, F.C. Walsh, M. Bárcena-Soto, N. Casillas, Classic Evans's Drop Corrosion Experiment Investigated in Terms of a Tertiary Current and Potential Distribution, Corrosion and Materials Degradation. 3 (2022) 270–280.
DOI: 10.3390/cmd3020016
Google Scholar
[12]
B.N. Popov, Chapter 3 - Electrochemical Kinetics of Corrosion, in: B.N. Popov (Ed.), Corrosion Engineering, Elsevier, Amsterdam, 2015: p.93–142. https://doi.org/.
DOI: 10.1016/B978-0-444-62722-3.00003-3
Google Scholar
[13]
X. He, T. Shoji, Quantitative prediction of EAC crack growth rate of sensitized type 304 stainless steel in boiling water reactor environments based on EPFEM, Journal of Pressure Vessel Technology, Transactions of the ASME. 129 (2007) 460–467.
DOI: 10.1115/1.2748827
Google Scholar
[14]
M.A. Mohtadi-Bonab, Effects of different parameters on initiation and propagation of stress corrosion cracks in pipeline steels: A review, Metals (Basel). 9 (2019).
DOI: 10.3390/met9050590
Google Scholar
[15]
A. Contreras, M. Salazar, A. Albiter, R. Galvan, O. Veg, Assessment of Stress Corrosion Cracking on Pipeline Steels Weldments Used in the Petroleum Industry by Slow Strain Rate Tests, in: Arc Welding, InTech, 2011.
DOI: 10.5772/26569
Google Scholar
[16]
R. Galván‐martínez, R. Orozco‐cruz, A. Carmona‐hernández, E. Mejía‐sánchez, M.A. Morales‐cabrera, A. Contreras, Corrosion study of pipeline steel under stress at different cathodic potentials by EIS, Metals (Basel). 9 (2019).
DOI: 10.3390/met9121353
Google Scholar
[17]
L.Y. Xu, Y.F. Cheng, Development of a finite element model for simulation and prediction of mechanoelectrochemical effect of pipeline corrosion, Corros Sci. 73 (2013) 150–160. https://doi.org/.
DOI: 10.1016/j.corsci.2013.04.004
Google Scholar