The Effectiveness of Arenga Pinnata Fiber Carbon Modified with Iron Oxide as an Adsorbent for Various Cationic Dyes

Article Preview

Abstract:

Disposing of dyes without proper treatment can cause water pollution because disposable dyes have a complex composition and are inert, so they must be adequately treated before being discharged into the waters. Using carbon from sugar palm (Arenga pinnata) fiber waste modified with iron oxide can be an alternative functional adsorbent for dye waste. The production of this practical adsorbent starts with carbonation of palm sugar fiber, chemical activation using H2SO4, incipient wetness impregnation with Fe(NO3)3.9H2O and ends with calcination at various temperatures of 200 °C, 300 °C; and 400 °C for 2 hours. The resulting carbon adsorbent material is characterized using FTIR (Fourier Transform Infrared), XRD (X-Ray Diffraction), and SEM (Structural Equation Modeling) analysis. In addition, the absorption capacity of the adsorbent for the dye waste is tested using the UV-VIS (Ultraviolet-Visible) instruments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-83

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Peraturan Pemerintah Republik Indonesia Nomor 82 Tahun 2001 Tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air Pasal 1 Ayat (11) Tentang Pencemaran Air

DOI: 10.30957/supremasi.v7i1.373

Google Scholar

[2] Bahadur, N., & Bhargava, N. (2019). Novel pilot scale photocatalytic treatment of textile & dyeing industry wastewater to achieve process water quality and enable zero liquid discharge. Journal of Water Process Engineering, 32; 100934. https://doi.org/10.1016/j.jwpe. 2019.100934

DOI: 10.1016/j.jwpe.2019.100934

Google Scholar

[3] Ding, L., Zou, B., Gao, W., Liu, Q., Wang, Z., Guo, Y., Wang, X., & Liu, Y. (2014). Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 446; 1–7.

DOI: 10.1016/j.colsurfa.2014.01.030

Google Scholar

[4] Guzel, F., Sayğılı H., Sayğılı, A., & Koyuncu, F. (2014). Decolorization of aqueous crystal violet solution by a new nanoporous carbon : Equilibrium and kinetic approach. Journal of Industrial and Engineering Chemistry. 20(5); 3375–3386.

DOI: 10.1016/j.jiec.2013.12.023

Google Scholar

[5] Goswami, M. & Phukan, P. (2017). Journal of Environmental Chemical Engineering Enhanced adsorption of cationic dyes using sulfonic acid modified activated carbon. Journal of Environmental Chemical Engineering. 5(4). 3508–3517.

DOI: 10.1016/j.jece.2017.07.016

Google Scholar

[6] Üner, O., Gecgel, ü., Kolancilar, H. & Bayrak, Y.  (2017). Adsorptive Removal of Rhodamine B with Activated Carbon Obtained from Okra Wastes. Chemical Engineering Communications. 204 (7); 772–783.

DOI: 10.1080/00986445.2017.1319361

Google Scholar

[7] Liu, T. Li, Y., Du, Q., Sun, J., Jiao, Y., Yang, G., Wang, Z., Xia, Y., Zhang, W., Wang, K., Zhu, H., & Wu, D. (2012). Adsorption of methylene blue from aqueous solution by graphene. Colloids and Surfaces B: Biointerfaces. 90(1); 197–203.

DOI: 10.1016/j.colsurfb.2011.10.019

Google Scholar

[8] Ghaedi, M., Nasab, A. G., Khodadoust, S., & Rajabi, M. (2014). Journal of Industrial and Engineering Chemistry Application of activated carbon as adsorbents for efficient removal of methylene blue : Kinetics and equilibrium study. Journal of Industrial and Engineering Chemistry. 20(4); 2317–2324.

DOI: 10.1016/j.jiec.2013.10.007

Google Scholar

[9] Theydan, S. K. & Ahmed, M. J. 2012. Journal of Analytical and Applied Pyrolysis Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation : Equilibrium, kinetics, and thermodynamic studies. Journal of Analytical and Applied Pyrolysis. 97; 116–122.

DOI: 10.1016/j.jaap.2012.05.008

Google Scholar

[10] Keputusan Menteri Negara Lingkungan Hidup Nomor : KEP-51/MENLH/10/1995 Tentang Baku Mutu Limbah Cair Bagi Kesehatan Industri Pasal 2 Ayat (9).

DOI: 10.52364/jz.v1i1.1

Google Scholar

[11] Melliti, A., Srivastava, V., Kheriji, J., Sillanpaa, M., & Hamrouni, B. (2021). Date Palm Fiber as a novel precursor for porous activated carbon: Optimization, characterization and its application as Tylosin antibiotic scavenger from aqueous solution. Surfaces and Interfaces, 24 (101047)

DOI: 10.1016/j.surfin.2021.101047

Google Scholar

[12] Mazoochi, T., Hamadanian, M., Ahmadi, M., & Jabbari, V. (2012). Investigation on the morphological characteristics of the nanofibrous membrane as electrospun in the different processing parameters. International Journal of Industrial Chemistry. 3(1); 1–8.

DOI: 10.1186/2228-5547-3-2

Google Scholar

[13] Ishak, M. R., Sapuan, S.m., Leman, Z., Rahman, M.Z.A., Anwar, U.M.K, & Siregar, J.P. (2013). Sugar palm (Arenga pinnata): Its fibers, polymers, and composites. Carbohydrate Polymers. 91(2); 699–710.

DOI: 10.1016/j.carbpol.2012.07.073

Google Scholar

[14] Barroso-Bogeat, A., Alexandre-Franco., M., Ferna´ndez-Gonza´lez, C., Macı´as-Garcıa, A., & Go´mez-Serrano, V. (2014). Electrical Conductivity of activated carbon-metal oxide nanocomposites under compression a comparison study. Physical Chemistry Chemical Physics, 16 (45)

DOI: 10.1039/C4CP03952A

Google Scholar

[15] Saha, B., Das, S., Saikia, J., & Das, G. (2011). Preferential and Enhanced Adsorption of Different Dyes on Iron Oxide Nanoparticles: A Comparative Study. The Journal of Physical Chemistry, 115: 8024-8033.

DOI: 10.1021/jp109258f

Google Scholar

[16] Kalantry, R. R., Jafari, A. J., Esrafili, A., Kakavandi, B., Gholizadeh, A., & Azari, A. (2015). Optimization and Evaluation of Reactive Dye Adsorption on Magnetic Composite of Activated Carbon and Iron Oxide. Desalination and Water Treatment, 1-12

DOI: 10.1080/19443994.2015.1011705

Google Scholar

[17] Amer, M., & Elwardany, A. (2020). Biomass Carbonization. Renewable Energy - Resources, Challenges and Applications, IntechOpen.

DOI: 10.5772/intechopen.90480

Google Scholar

[18] Reza, R. A., & Ahmaruzzaman, M. (2015). A novel synthesis of Fe2O3@activated carbon composite and its exploitation for the elimination of carcinogenic textile dye from an aqueous phase. RSC Advances, 5(14); 10575–10586

DOI: 10.1039/c4ra13601b

Google Scholar

[19] Al-Kady, A. S., Gaber, M., Hussein, M. M., & Ebeid, E.-Z. M. (2011). Structural and fluorescence quenching characterization of hematite nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 83(1); 398–405

DOI: 10.1016/j.saa.2011.08.052

Google Scholar

[20] Xiao, W., Garba, Z. N., Sun, S., Lawan, I., Wang, L., Lin, M., & Yuan, Z. (2020). Preparation and evaluation of an effective activated carbon from white sugar for the adsorption of rhodamine B dye. Journal of Cleaner Production. 253; 119989.

DOI: 10.1016/j.jclepro.2020.119989

Google Scholar

[21] Ilyas, R. A., Sapuan, S.M., Ibrahim, R., Abral, H., Ishak, M. R., Zainudin, E. S., Asrofi, M., Atikah, M. S. N., Huzaifah, M. R. M., Radzi, A. M., Azammi, A. M. N., Shaharuzaman, M. A., Nurrazi, N. M., Syafri, E., Sari, N. H., Norrahim, M. N. F., & Jumaidin, R. (2019). Sugar palm ( Arenga pinnata ( Wurmb .) Merr ) cellulosic fiber hierarchy : a comprehensive approach from macro to the nanoscale. Journal of Materials Research and Technology, 8(3), 2753–2766.

DOI: 10.1016/j.jmrt.2019.04.011

Google Scholar

[22] Xiang, Z., Song, Y., Xiong, J., Pan, Z., Wang, X., Liu, L., Liu, R., Yang, H., & Lu, W. (2019). Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @carbon composites derived from metal-organic frameworks. Carbon, 142, p.20–31.

DOI: 10.1016/j.carbon.2018.10.014

Google Scholar

[23] Jia, Z., Li, Z., Li, S., Li, Y., & Zhu, R. (2016). Adsorption performance and mechanism of methylene blue on chemically activated carbon spheres derived from hydrothermally-prepared poly(vinyl alcohol) microspheres. Journal of Molecular Liquids, 220; 56–62.

DOI: 10.1016/j.molliq.2016.04.063

Google Scholar

[24] Achaby, M. El., Fayoud, N., Figueroa-Espinoza, M. C., Ben youcef, H., & Aboulkas, A. (2018). New Highly Hydrated Cellulose Microfibrils with a Tendril Helical Morphology Extracted from Agro-waste Material: Application to Removal of Dyes from Waste Water. RSC Advances. 8; 5212–5224.

DOI: 10.1039/C7RA10239A

Google Scholar

[25] Jin, Q., Zhu, X., Xing, X., & Ren, T. (2012). Adsorptive Removal of Cationic Dyes from Aqueous Solutions Using Graphite Oxide. Adsorption Science & Technology. 30(5); 437–447.

DOI: 10.1260/0263-6174.30.5.437

Google Scholar

[26] Zhang, J., Li, F. & Sun, Q. (2018). Rapid and Selective Adsorption of Cationic Dyes by a Unique Metal-organic Framework with Decorated Pore Surface. Applied Surface Science. 440; 1219-1226

DOI: 10.1016/j.apsusc.2018.01.258

Google Scholar

[27] Li, T. et al. (2018). Microporous and Mesoporous Materials Regulation of the surface area and surface charge property of MOFs by multivariate strategy : Synthesis, characterization, selective dye adsorption, and separation. Microporous and Mesoporous Materials. 272; 101–108

DOI: 10.1016/j.micromeso.2018.06.023

Google Scholar

[28] Oladoye, P. O., Ajiboye, T. O., Omotola, E. O. et al. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering, 16; 100678

DOI: 10.1016/j.rineng.2022.100678

Google Scholar

[29] Radovic, L. R., Silva, I. F., Ume, J. I. et al. (1997). An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electrondonating functional groups by chemically modified activated carbons. Carbon, 35(9); 1339–1348

DOI: 10.1016/S0008-6223(97)00072-9

Google Scholar

[30] Savova, D., Petrov, N., Yardim, M. F. et al. (2003). The influence of the texture and surface properties of carbon adsorbents obtained from biomass products on the adsorption of manganese ions from aqueous solution. Carbon, 41(10); 1897–1903

DOI: 10.1016/S0008-6223(03)00179-9

Google Scholar

[31] Karagoz, S., Tay, T., Ucar, S., & Erdem, M. (2008). Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresource Technology, 99(14); 6214–6222

DOI: 10.1016/j.biortech.2007.12.019

Google Scholar

[32] Raji, Y., Nadi, A., Mechnou, I. et al. (2023). High adsorption capacities of crystal violet dye by low-cost activated carbon prepared from Moroccan Moringa oleifera wastes: Characterization, adsorption and mechanism study. Diamond & Related Materials, 135; 109834

DOI: 10.1016/j.diamond.2023.109834

Google Scholar

[33] Chen, B., Long, F., Chen, S. et al. (2020). Magnetic chitosan biopolymer as a versatile adsorbent for simultaneous and synergistic removal of different sorts of dyestuffs from simulated wastewater. Chemical Engineering Journal, 385; 123926

DOI: 10.1016/j.cej.2019.123926

Google Scholar

[34] Yu, Y., Qiao, N., Wang, D. J. et al. (2019). Fluffy honeycomb-like activated carbon from popcorn with high surface area and well-developed porosity for ultra-high efficiency adsorption of organic dyes. Bioresource Technology, 285; 121340

DOI: 10.1016/j.biortech.2019.121340

Google Scholar

[35] Wang, Q., Luo, C., Lai, Z. et al. (2022). Honeycomb-like cork activated carbon with ultra-high adsorption capacity for anionic, cationic and mixed dye: Preparation, performance and mechanism. Bioresource Technology, 357; 127363

DOI: 10.1016/j.biortech.2022.127363

Google Scholar