Profile of the Adsorption Ability of Sulfonate-Modified Lignocellulose Based on Bagasse Waste to Some Batik Textile Dyes

Article Preview

Abstract:

The presence of synthetic dye contamination produced from the batik industry encourages research to overcome it through the adsorption method using a smart adsorbent, in this case an adsorbent that has several active groups. This study aims to examine the adsorbent of lignocellulose sulfonate based on bagasse waste for some textile dyes used in the batik industry. The synthesis of lignocellulose sulfonate was carried out through several steps such as extraction and activation using Na2SO3 and NaHCO3. The resulting products were then characterized using FTIR and SEM apparatures and applied them as an adsorbent for Remazol Red RB and Indanthrene Blue RS dyes. The adsorption test was carried out using bagasse, lignocellulose, and lignocellulose sulfonate adsorbents at a solution concentration of 50 ppm with variations in contact time of 5, 10, 20, 40, 80, and 160 minutes. The remaining dye content in the solution was then tested using a UV-Vis Spectrophotometer. From the experimental results, it is known that lignocellulose sulfonate, lignocellulose, and bagasse are able to absorb Remazol Red RB dye, respectively, by 84.41%, 63.87% and 61.52%. While for Indanthrene Blue RS dye, the largest absorption was found in lignocellulose sulfonate adsorbents of 56.35%, lignocellulose 50.72%, and baggase 45.93%. The highest adsorption capacity was found in the lignocellulosic sulfonate adsorbent, namely 42.2081 ppm for Remazol Red RB adsorption and 28.1771 ppm for Indanthrene Blue RS dye.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-70

Citation:

Online since:

October 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, and A.B. Pandit, A critical review on textile wastewater treatments: Possible approaches, Journal of Environmental Management, 182 (2016) 351–366.

DOI: 10.1016/j.jenvman.2016.07.090

Google Scholar

[2] S. Benkhaya, S.El. Harfi, and A.El. Harfi, Classifications , properties and applications of textile dyes: A review. Applied Journal of Environmental Engineering Science, 3 (2018) 311-320.

DOI: 10.1016/j.inoche.2020.107891

Google Scholar

[3] N. Sharma, D.P. Tiwari, and S.K. Singh, Introduction. Libraries in the Early 21st Century, volume 2, De Gruyter Saur, (2012).

Google Scholar

[4] L. Indrayani, and N. Rahmah, Nilai Parameter Kadar Pencemar Sebagai Penentu Tingkat Efektivitas Tahapan Pengolahan Limbah Cair Industri Batik, Jurnal Rekayasa Proses, 12(1) (2018) 41-50.

DOI: 10.22146/jrekpros.35754

Google Scholar

[5] Benkhaya et.al., A review on classifications, recent synthesis and applications of textile dyes, Inorganic Chemistry Communications, 107891 (2020) 1-36.

DOI: 10.1016/j.inoche.2020.107891

Google Scholar

[6] N. Fatimah, Alimuddin, and R. Gunawan, Penentuan Intesitas Warna Rhemazol RED RB 133 dalam Limbah Batik dengan Elektrokoagulasi Menggunakan NaCl, Jurnal Atomik, 3(1) (2018) 39–46.

Google Scholar

[7] S.S. Mohanty, and A. Kumar, Biodegradation of Indanthrene Blue RS dye in immobilized continuous upflow packed bed bioreactor using corncob biochar, Scientific Reports, 11(1) (2021) 1–13.

DOI: 10.1038/s41598-021-92889-3

Google Scholar

[8] Riyanto, Inovasi Alat Pengolah Limbah Batik "Elektrobatik", Juranl Hasil Penelitian di Kabupaten Sleman, 2(1) (2015) 65-77.

Google Scholar

[9] T. Murniati, Inayati, and S. Budiastuti, Pengolahan Limbah Cair Industri Batik dengan Metode Elektrolisis sebagai Upaya Penurunan Tingkat Konsentrasi Logam Berat di Sungai Jenes Laweyan Surakarta, Jurnal EKOSAINS, 3(1) (2015) 77-83.

DOI: 10.20961/ekuilibrium.v12i1.2176

Google Scholar

[10] Q. Zheng, Y. Dai, and X. Han, Decolorization of azo dye C.I. Reactive Black 5 by ozonation in aqueous solution: influencing factors, degradation products, reaction pathway and toxicity assessment, Water Science & Technology, 73(7) (2016) 1500-1510.

DOI: 10.2166/wst.2015.550

Google Scholar

[11] N.I. Wantoputri, Q. Helmy, and S. Notodarmojo, Textile Wastewater Post Treatment Using Ozonation, Jurnal Presipitasi, 18(1) (2021) 56-63.

DOI: 10.14710/presipitasi.v18i1.56-63

Google Scholar

[12] E. Al-Abbad, and F. Alakhras, Removal of Dye Acid Red 1 from Aqueous Solutions Using Chitosan-iso-Vanillin Sorbent Material, Indonesian Journal of Science & Technology, 5(3) (2020) 352-365.

DOI: 10.17509/ijost.v5i3.24986

Google Scholar

[13] S.B. Utomo, Aplikasi Lignoselulosa Sulfonat Ampas Tebu untuk Adsorpsi Zat Warna Tekstil Kationik Basic Violet 10, Jurnal Kimia Dan Pendidikan Kimia (JKPK), 1(1) (2016), 11-19.

DOI: 10.20961/jkpk.v1i1.10096

Google Scholar

[14] U. Lusiana, Application of Calibration Curve, Accuracy and Precision Chart as Internal Quality Control at COD Testing in Wastewater, Biopropal Industri, 3(1) (2012) 1–8.

Google Scholar

[15] D.R. Suminar, and N. Saksono, Pengaruh Kedalaman Anoda pada Metode Contact Glow Discharge Electrolysis (CGDE) dalam Degradasi Pewarna Tekstil Remazol Red, Jurnal Teknik Kimia Dan Lingkungan, 2(2) (2018), 66-74.

DOI: 10.33795/jtkl.v2i2.74

Google Scholar

[16] I.N. Sukarta, Sintesis Membran Nata de Pina dan Aplikasinya untuk Adsorpsi Zat Warna Tekstil Remazol Red RB, Jurnal Kimia (Journal of Chemistry), 14(2) (2020) 126-141.

DOI: 10.24843/jchem.2020.v14.i02.p05

Google Scholar

[17] M. Tamyiz, N.H. Hidayah, A. Salsabella, and T. Maulidiyah, Pemanfaatan Komposit Biosorben Tanah Liat dan Arang Bambu dalam Mengurangi Kandungan Zat Warna pada Limbah Cair Industri Batik, Jurnal Presipitasi, 16(3) (2019), 152-159.

DOI: 10.14710/presipitasi.v16i3.152-159

Google Scholar

[18] N.P. Setianingrum, et.al., Pengurangan Zat Warna Remazol Red RB Menggunakan Metode Elektrokoagulasi Secara Batch, Jurnal Rekayasa Proses, 11(2) (2018), 78-85.

DOI: 10.22146/jrekpros.26900

Google Scholar