Neural Network Regressor for Designing Biomedical Low Elastic Modulus Ti-Zr-Nb-Mo Medium Entropy Alloys

Article Preview

Abstract:

The excellent biocompatibility of Ti and Zr alloys makes them the best candidates for orthopedic implantations. The design of high Ti and Zr-containing alloys that show low Young's modulus for implant manufacturing is the objective of this work. Here, a feed-forward-back propagation neural network was used to speed up the design process and optimize alloy composition. The β-typeTi45-Zr39-Nb12-Mo4 alloy is designed and showed promising properties. The alloy showed a low elastic modulus of 78 GPa and a high yield strength of 891 MPa resulting in a high elastic admissible strain that made it suitable for orthopedic applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-94

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Saini, Y. Singh, P. Arora, V. Arora, K. Jain, World Journal of Clinical Cases: WJCC 3 (2015) 52.

Google Scholar

[2] M. Long, H. Rack, Biomaterials 19 (1998) 1621-1639.

Google Scholar

[3] K. Miura, N. Yamada, S. Hanada, T.-K. Jung, E. Itoi, Acta biomaterialia 7 (2011) 2320-2326.

Google Scholar

[4] J.D.C. Tardelli, C. Bolfarini, A.C. Dos Reis, Journal of Trace Elements in Medicine and Biology 62 (2020) 126618.

DOI: 10.1016/j.jtemb.2020.126618

Google Scholar

[5] S.S. Sidhu, H. Singh, M.A.-H. Gepreel, Materials Science and Engineering: C 121 (2021) 111661.

Google Scholar

[6] M. Niinomi, Materials Science and Engineering: A 243 (1998) 231-236.

Google Scholar

[7] K.S. Tun, M. Gupta, T. Srivatsan, Processing challenges and properties of lightweight high entropy alloys, High Entropy Alloys, CRC Press, 2020, pp.95-124.

DOI: 10.1201/9780367374426-4

Google Scholar

[8] J.W. Yeh, Y.L. Chen, S.J. Lin, S.K. Chen, High-entropy alloys–a new era of exploitation, Materials science forum, vol 560, Trans Tech Publ, 2007, pp.1-9.

DOI: 10.4028/www.scientific.net/msf.560.1

Google Scholar

[9] K.-K. Wong, H.-C. Hsu, S.-C. Wu, W.-F. Ho, Journal of Alloys and Compounds 868 (2021) 159137.

Google Scholar

[10] S. Hu, T. Li, Z. Su, D. Liu, Intermetallics 140 (2022) 107401.

Google Scholar

[11] M. Abdel-Hady, K. Hinoshita, H. Fuwa, Y. Murata, M. Morinaga, Materials Science and Engineering: A 480 (2008) 167-174.

DOI: 10.1016/j.msea.2007.06.083

Google Scholar

[12] L. Zhuang, E. Langer, Journal of materials science 24 (1989) 381-388.

Google Scholar

[13] M. Abdel-Hady, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato, M. Morinaga, Scripta Materialia 57 (2007) 1000-1003.

DOI: 10.1016/j.scriptamat.2007.08.003

Google Scholar

[14] P. Ji, B. Chen, B. Li, Y. Tang, G. Zhang, X. Zhang, M. Ma, R. Liu, Journal of Materials Science & Technology 69 (2021) 7-14.

Google Scholar

[15] M. Niinomi, M. Nakai, International journal of biomaterials 2011 (2011).

Google Scholar