Effect of Rotary Swaging on Mechanical and Corrosion Properties of Zn-1%Mg and Zn-1%Mg-0.1%Ca Alloys

Article Preview

Abstract:

The article presents the results of the study of microstructure, mechanical properties, corrosion resistance and fatigue strength of the Zn-1%Mg and Zn-1%Mg-0.1%Ca alloys, processed by rotary swaging (RS). It is shown that the grain refinement leads to an increase in the strength of the alloys up to 196 ± 4 and 218 ± 6 MPa for the Zn-1%Mg and Zn-1%Mg-0.1%Ca alloys, respectively. The ductility of the Zn-1%Mg and Zn-1%Mg-0.1%Ca alloys also increases up to 5.7 ± 2.2 and 7.0 ± 0.7%, respectively. The structure caused by RS does not affect the corrosion potential of both investigated alloys, but changes the corrosion current density, decreasing it for the Zn-1%Mg alloy and increasing it for Zn-1%Mg-0.1%Ca. The fatigue limit of the Zn-1%Mg and Zn-1%Mg-0.1%Ca alloys after RS is equal to 115 MPa and 130 MPa, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-113

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Zhuo, Y. Wu, J. Ju et al. Recent progress of novel biodegradable zinc alloys: from the perspective of strengthening and toughening. Journal of Materials Research and Technology 2022; 17: 244-69.

DOI: 10.1016/j.jmrt.2022.01.004

Google Scholar

[2] S. Agarwal, J. Curtin, B. Duffy et al. Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Materials Science and Engineering: C 2016, 68:948-963.

DOI: 10.1016/j.msec.2016.06.020

Google Scholar

[3] E. Mostaed, M. Sikora-Jasinska, J.W. Drelich, M. Vedani. Zinc-based alloys for degradable vascular stent applications. Acta Biomaterialia 2018, 71: 1-23.

DOI: 10.1016/j.actbio.2018.03.005

Google Scholar

[4] G. Chandra, A. Pandey. Biodegradable bone implants in orthopedic applications: a review. Biocybernetics and Biomedical Engineering 2020, 40(2):596-610.

DOI: 10.1016/j.bbe.2020.02.003

Google Scholar

[5] B. Zhao, X. Qiu, D. Wang et al. Application of bioabsorbable screw fixation for anterior cervical decompression and bone grafting. Clinics 2016;71:320-24.

DOI: 10.6061/clinics/2016(06)06

Google Scholar

[6] F. Witte, J. Fischer, J. Nellesen et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 2006;27:1013-18.

DOI: 10.1016/j.biomaterials.2005.07.037

Google Scholar

[7] Y.F. Zheng, X.N. Gu, F. Witte. Biodegradable metals. Materials Science and Engineering R 2014; 77:1-34.

Google Scholar

[8] C.J. Frederickson, J.-Y. Koh, A.I. Bush. The neurobiology of zinc in health and disease. Nature Reviews Neuroscience 2005;6:449-62.

Google Scholar

[9] B.L. Vallee, K.H. Falchuk. The biochemical basis of zinc physiology. Physiological Reviews 1993; 73: 79-118.

DOI: 10.1152/physrev.1993.73.1.79

Google Scholar

[10] H. Kabir, K. Munir, C. Wen et al. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioactive Materials 2021;6(3):836-79.

DOI: 10.1016/j.bioactmat.2020.09.013

Google Scholar

[11] D. Vojtěch, J. Kubásek, J. Šerák et al. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomaterialia 2011; 7: 3515-22.

DOI: 10.1016/j.actbio.2011.05.008

Google Scholar

[12] P.K. Bowen, R.J. Guillory, E.R. Shearier et al. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Materials Science and Engineering C 2015;56:467-72.

DOI: 10.1016/j.msec.2015.07.022

Google Scholar

[13] B. Jia, H. Yang, Z. Zhang et al. Biodegradable Zn–Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies. Bioactive Materials 2021;6(6):1588-1604.

DOI: 10.1016/j.bioactmat.2020.11.007

Google Scholar

[14] S. Du, Y. Shen, Y. Zheng et al. Systematic in vitro and in vivo study on biodegradable binary Zn-0.2 at% Rare Earth alloys (Zn-RE: Sc, Y, La–Nd, Sm–Lu). Bioactive Materials 2023;24:507-23.

DOI: 10.1016/j.bioactmat.2023.01.004

Google Scholar

[15] K. Guruviah, S.K. Annamalai, A. Ramaswamy et al. Comparative antimicrobial and anticancer activity of biologically and chemically synthesized zinc oxide nanoparticles toward breast cancer cells. Nanomedicine Journal 2020;7(4):272-283.

Google Scholar

[16] N.M. Al-Enazi, K. Alsamhary, M. Kha et al. In vitro anticancer and antibacterial performance of biosynthesized Ag and Ce co-doped ZnO NPs. Bioprocess and Biosystems Engineering 2023;46:89-103.

DOI: 10.1007/s00449-022-02815-8

Google Scholar

[17] Q. Mao, Y. Liu, Y. Zhao. A review on mechanical properties and microstructure of ultrafine grained metals and alloys processed by rotary swaging. Journal of Alloys and Compounds 2022; 896: 163122.

DOI: 10.1016/j.jallcom.2021.163122

Google Scholar

[18] L. Ye, H. Huang, C. Sun et al. Effect of grain size and volume fraction of eutectic structure on mechanical properties and corrosion behavior of as-cast Zn–Mg binary alloys, Journal of Materials Research and Technology 2022;16:1673-1685.

DOI: 10.1016/j.jmrt.2021.12.101

Google Scholar

[19] Q. Li, M. Wei, J. Yang et al. Effect of Ca addition on the microstructure, mechanical properties and corrosion rate of degradable Zn-1Mg alloys, Journal of Alloys and Compounds 2021;887:161255.

DOI: 10.1016/j.jallcom.2021.161255

Google Scholar

[20] ASTM G59–97(2003). Standard test method for conducting potentiodynamic polarization resistance measurements. West Conshohocken, PA: ASTM International, 2006.

Google Scholar

[21] N. Martynenko, N. Anisimova, O. Rybalchenko et al. Effect of high-pressure torsion on microstructure, mechanical and operational properties of Zn-1%Mg-0.1%Ca alloy, Metals. 12(10) (2022) 1681.

DOI: 10.3390/met12101681

Google Scholar

[22] K. Ren, K. Zhang, Y. Zhang et al. Effect of ECAP temperature on formation of triple heterogeneous microstructure and mechanical properties of Zn–1Cu alloy, Mater. Sci. Eng. A. 826 (2021) 141990.

DOI: 10.1016/j.msea.2021.141990

Google Scholar