Effects of C Doping on the Structure and Functional Characteristics of Fe-Mn Alloys after Equal Channel Angular Pressing

Article Preview

Abstract:

A comparative study of the structure and properties of two biodegradable Fe – 27Mn and Fe – 27Mn – C alloys for biomedical use after equal channel angular pressing (ECAP) has been carried out. It is noted that addition of carbon in the alloy leads to a change in the mechanism of plastic deformation from the formation of martensite to deformation twinning in austenite. ECAP improves the strength characteristics of the alloys under study and the corrosion rate by refining the structure and increasing the dislocation density. The presence of a partially twinned structure in the Fe – 27Mn – C alloy results in a lower corrosion rate despite a stronger refinement of the alloy structure after ECAP.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-106

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Heiden, E. Walker, L. Stanciu, Magnesium, Iron and Zinc Alloys, the Trifecta of Bioresorbable Orthopaedic and Vascular Implantation - A Review. J. Biotechnol. Biomater. 5 (2) (2015) 1000176

DOI: 10.4172/2155-952x.1000178

Google Scholar

[2] Y.F. Zheng, X.N. Gu, F. Witte, Biodegradable metals, Mater. Sci. Eng. R Rep. 77 (2014) 1-34.

Google Scholar

[3] H.-S. Han, S. Loffredo, I. Jun et al., Current status and outlook on the clinical translation of biodegradable metals, Mater. Today. 23 (2019) 57–71.

DOI: 10.1016/j.mattod.2018.05.018

Google Scholar

[4] H. Hermawan, D. Dubé, D. Mantovani, Developments in metallic biodegradable stents, Acta Biomater. 6 (2010) 1693–1697.

DOI: 10.1016/j.actbio.2009.10.006

Google Scholar

[5] M. Moravej, D. Mantovani, Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities, Int. J. Mol. Sci. 12 (2011) 4250–4270.

DOI: 10.3390/ijms12074250

Google Scholar

[6] B. Liu, Y.F. Zheng, Effects of alloying elements (Mn, Co., Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron, Acta Biomater. 7 (2011) 1407–1420.

DOI: 10.1016/j.actbio.2010.11.001

Google Scholar

[7] H. Hermawan, D. Dube, D. Mantovani, Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents, J. Biomed. Mater. Res. A 93 (2010) 1–11.

DOI: 10.1002/jbm.a.32224

Google Scholar

[8] M. Schinhammer, A.C. Hänzi, J.F. Löffler et al., Design strategy for biodegradable Fe-based alloys for medical applications, Acta Biomater. 6 (2010) 1705–1713.

DOI: 10.1016/j.actbio.2009.07.039

Google Scholar

[9] Hermawan H, Alamdari H, Mantovani D et al., Iron-manganese: new class of degradable metallic biomaterials prepared by powder metallurgy, Powder Metall. 51 (2008) 38–45.

DOI: 10.1179/174329008x284868

Google Scholar

[10] M. Moravej, F. Prima, M. Fiset et al., Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship, Acta Biomater. 6 (2010) 1726–1735.

DOI: 10.1016/j.actbio.2010.01.010

Google Scholar

[11] F.L. Nie, Y.F. Zheng, S.C. Wei et al., In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron, Biomed. Mater. 5 (2010) 65015.

DOI: 10.1088/1748-6041/5/6/065015

Google Scholar

[12] O.V. Rybalchenko, N.Yu. Anisimova, M.V. Kiselevsky et al., Effect of equal-channel angular pressing on structure and properties of Fe-Mn-С alloys for biomedical applications, Mater. Today Commun. 30 (2022) 103048.

DOI: 10.1016/j.mtcomm.2021.103048

Google Scholar

[13] S.W. Youn, M.J. Kim, Effect of manganese content on the magnetic susceptibility of ferrous-manganese alloys: correlation between microstructure on X-Ray diffraction and size of the low-intensity area on MRI, Investig. Magn. Reson. Imaging 19 (2015) 76–87.

DOI: 10.13104/imri.2015.19.2.76

Google Scholar

[14] J. Fiocchi, C.A. Biffi, S. Gambaro et al., Effect of laser welding on the mechanical and degradation behaviour of Fe-20Mn-0.6C bioabsorbable alloy, J. Mater. Res. Technol. 9 (6) (2020) 13474–13482.

DOI: 10.1016/j.jmrt.2020.09.104

Google Scholar

[15] W.L. Xu, X. Lu, L.L. Tan et al.. Study on properties of a novel biodegradable Fe-30Mn-1C alloy, Acta Metall. Sin. (Engl. Lett.) 47 (2011) 1342–1347.

Google Scholar

[16] C.N.J. Wagner. Analysis of the broadening and change in position of peaks in an X-ray powder pattern. In: Cohen JB, Hilliard JE (Eds.), Local atomic arrangement studied by X-ray diffraction, Gordon and Breach, New York, 1966, p.219.

Google Scholar

[17] B.E. Warren. X-ray diffraction. Dover Publications, Inc., New York, 1990.

Google Scholar

[18] L.J. Teutonico, The dissociation of dislocations in the face-centered cubic structure, Acta Metall. 11(1963) 1283–1289.

DOI: 10.1016/0001-6160(63)90023-3

Google Scholar

[19] J.W. Christian, S. Mahajan, Deformation Twinning, Prog. Mater. Sci. 39 (1995) 1–157.

Google Scholar

[20] L. Vitos, J.O. Nilsson, B. Johansson, Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory, Acta Mater. 54 (2006) 3821–3826.

DOI: 10.1016/j.actamat.2006.04.013

Google Scholar

[21] R.E. Schramm, R.P. Reed, Stacking fault energies of seven commercial austenitic stainless steels, Metall. Mater. Trans. A 6 (1975) 1345–1351.

DOI: 10.1007/bf02641927

Google Scholar

[22] J.X. Yan, Z.J. Zhang, H. Yu et al., Effects of pressure on the generalized stacking fault energy and twinning propensity of face-centered cubic metals, J. Alloys Compd. 866 (2021) 158869.

DOI: 10.1016/j.jallcom.2021.158869

Google Scholar

[23] T. Yonezawa, K. Suzuki, S. Ooki, The effect of chemical composition and heat treatment conditions on stacking fault energy for Fe-Cr-Ni austenitic stainless steel, Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 44 (2013) 5884–5896.

DOI: 10.1007/s11661-013-1943-0

Google Scholar

[24] T.H. Lee, E. Shin, C.S. Oh et al., Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels, Acta Mater., 58 (2010) 3173–3186.

DOI: 10.1016/j.actamat.2010.01.056

Google Scholar

[25] S. Allain, J.P.P. Chateau, O. Bouaziz, A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel, Mater. Sci. Eng. A, 387–389 (2004) 143-147.

DOI: 10.1016/j.msea.2004.01.060

Google Scholar

[26] Y. Tian, O.I. Gorbatov, A. Borgenstam et al., Deformation microstructure and deformation-induced martensite in austenitic Fe-Cr-Ni alloys depending on stacking fault energy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48 (2017) 1–7.

DOI: 10.1007/s11661-016-3839-2

Google Scholar

[27] E. Gerashi, R. Alizadeh, T.G. Langdon, Effect of crystallographic texture and twinning on the corrosion behavior of Mg alloys: A review. J. Magnes. Alloy. 10 (2) (2022) 313–325.

DOI: 10.1016/j.jma.2021.09.009

Google Scholar