Status and Challenges in Biomedical Applications of LDHs

Article Preview

Abstract:

This work briefly discusses the applications of Layered Double Hydroxides (LDHs) to medicine and presents a study regarding the growth of LDHs on the biodegradable AZ31 alloy foreseen to manufacture a rib-fixator. Mg is one of the most investigated metallic materials for biomedical applications owing to its high biocompatibility and osteointegration, as well as a value of the elastic modulus close to that of human bone. Since Mg is essential for metabolism, when it degrades forming Mg2+ ions, it promotes healing and growth of bone tissue. Experiments have been carried out to grow LDHs on the alloy surface in view to retard corrosion in human body and intercalate drugs to be released in-situ, with anti-inflammatory, analgesic, and antimicrobial action.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-130

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Richetta, L. Digiamberardino, A. Mattoccia, P.G. Medaglia, R. Montanari, R. Pizzoferrato, D. Scarpellini, A. Varone, C. Falconi, A. Orsini, S. Kaciulis, A. Mezzi, P. Soltani, Surface spectroscopy and structural analysis of nanostructured multifunctional (Zn, Al) layered double hydroxides. Surface and Interface Analysis 48 (2016) 514–518.

DOI: 10.1002/sia.5973

Google Scholar

[2] M. Richetta, E. Ciotta, R. Montanari, R. Narducci, R. Pizzoferrato, A. Varone, Effect of Al substrate microstructure on layered double hydroxide morphology. J. of Mater. Sciences 54 (2019) 12437–12449.

DOI: 10.1007/s10853-019-03711-5

Google Scholar

[3] V. Ambrogi, G. Fardella, G. Grandolini, L. Perioli, Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents--I. Intercalation and in vitro release of ibuprofen. Int. J. Pharm. 220 (2001) 23–32.

DOI: 10.1016/s0378-5173(01)00629-9

Google Scholar

[4] V. Ambrogi, G. Fardella, G. Grandolini, L. Perioli, M.C. Tiralti, Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents, II: uptake of diclofenac for a controlled release formulation. AAPS Pharm. Sci. Tech. 3(2002)E26.

DOI: 10.1208/pt030326

Google Scholar

[5] Oh Jm, Park Dh, Choi Sj, Choy Jh., LDH Nanocontainers as Bio-Reservoirs and Drug Delivery Carriers. Recent Pat Nanotechnol. 6 (2012)200.

DOI: 10.2174/187221012803531538

Google Scholar

[6] Soo-Jin Choi & Jin-Ho Choy, Layered double hydroxide nanoparticles as target-specific delivery carriers: uptake mechanism and toxicity. Nanomedicine 6(2011).

DOI: 10.2217/nnm.11.86

Google Scholar

[7] Dae-Hwan Park, Seong-Ju Hwang, Jae-Min Oh, Jae-Hun Yang, Jin-Ho Choy, Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Progress in Polymer Science 38(2013)1442–1486.

DOI: 10.1016/j.progpolymsci.2013.05.007

Google Scholar

[8] Z.P. Xu, T.L. Walker, K.-L. Liu, H.M. Cooper, G.Q. Max Lu, P.F. Bartlett, Layered double hydroxide nanoparticles as cellular delivery vectors of supercoiled plasmid DNA. Int. J. Nanomedicine 2 (2007)163–174.

Google Scholar

[9] Y.S. Yoon, B.I. Lee, K.S. Lee, G.H. Im, S.H. Byeon, J.H. Lee, I.S. Lee, Surface Modification of Exfoliated Layered Gadolinium Hydroxide for the Development of Multimodal Contrast Agents for MRI and Fluorescence Imaging. Adv. Funct. Mater. 19 (2009)3375–3380.

DOI: 10.1002/adfm.200901051

Google Scholar

[10] J.M. Oh, S.J. Choi, G.E. Lee, S.H. Han, J.H. Choy, Inorganic Drug-Delivery Nanovehicle Conjugated with Cancer-Cell-Specific Ligand. Adv. Func. Mater. 19 (10) (2009)1617–1624.

DOI: 10.1002/adfm.200801127

Google Scholar

[11] L. Wang, H. Xing, S. Zhang, Q. Ren, L. Pan, K. Zhang, W. Bu, X. Zheng, L. Zhou, W. Peng, Y. Hua, J. Shi, A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imaging and simultaneous drug delivery. Biomaterials 34(13)(2013) 3390–3401.

DOI: 10.1016/j.biomaterials.2013.01.070

Google Scholar

[12] M. Badar, M. I. Rahim, M. Kieke, T. Ebel, M. Rohde, H. Hauser, P. Behrens, P.P. Mueller, Controlled drug release from antibiotic-loaded layered double hydroxide coatings on porous titanium implants in a mouse model. J. of Biomed. Mater. Res. 103(6)(2015)2141–2149.

DOI: 10.1002/jbm.a.35358

Google Scholar

[13] C. Taviot-Guého, V. Prévot, C. Forano, G. Renaudin, C. Mousty, F. Leroux, Tailoring Hybrid Layered Double Hydroxides for the Development of Innovative Applications. Advanced Functional Materials 28(27)(2017)1703868.

DOI: 10.1002/adfm.201703868

Google Scholar

[14] G. Belgheisi, M.H. Nazarpak, M. Solati-Hashjin, Fabrication and evaluation of combined 3D printed/pamidronate-layered double hydroxides enriched electrospun scaffolds for bone tissue engineering applications. Applied Clay Science 225(2022)106538.

DOI: 10.1016/j.clay.2022.106538

Google Scholar

[15] Y. Zhang, D.I Sun, J. Cheng, J. K. H. Tsoi, J. Chen, Mechanical and biological properties of Ti–(0–25wt%) Nb alloys for biomedical implants application. Regenerative Biomater. 7(2020) 119–127.

DOI: 10.1093/rb/rbz042

Google Scholar

[16] V. Tsakiris, C. Tardei, F.M. Clinischi, Biodegradable Mg alloys for orthopedic implants - A review. J. of Magnesium and Alloys 9(2021)1884–1905.

DOI: 10.1016/j.jma.2021.06.024

Google Scholar

[17] A.C. Hänzi, A.S. Sologubenko, P.J. Uggowitzer, Design strategy for new biodegradable Mg-Y-Zn alloys for medical applications. Int. J. Mater. Res. 100(8) (2009)1127–1136.

DOI: 10.3139/146.110157

Google Scholar

[18] T.C. Mineo, V. Ambrogi, B. Cristino, E. Pompeo, C. Pistolese, Changing indications for thoracotomy in blunt chest trauma after the advent of videothoracoscopy. J. Trauma 47(1999)1088–1091.

DOI: 10.1097/00005373-199912000-00017

Google Scholar

[19] M. Bemelman, M. Poeze, T.J. Blokhuis, L.P.H. Leenen, Historic Overview of Treatment Techniques for Rib Fractures and Flail Chest. European Journal of Trauma and Emergency Surgery: Official Publication of the European Trauma Society 36(2010)407–415.

DOI: 10.1007/s00068-010-0046-5

Google Scholar

[20] W.M. Wu, Y. Yang, Z.L. Gao, T.C. Zhao, W.W. He, Which is better to multiple rib fractures, surgical treatment or conservative treatment? Int. J. Clin. Exp. Med. 8(5)(2015)7930–7936.

Google Scholar

[21] S. Jafari, S.E. Harandi, R.K. Singh Raman, A review of stress-corrosion cracking and corrosion fatigue of magnesium alloys for biodegradable implant applications. JOM 67(5)(2015)1143–1153.

DOI: 10.1007/s11837-015-1366-z

Google Scholar

[22] S. Jafari, R.K.S. Raman, C.H.J. Davies, Stress corrosion cracking of an extruded magnesium alloy (ZK21) in a simulated body fluid. Eng. Fract. Mech. 201(2018)47–55.

DOI: 10.1016/j.engfracmech.2018.09.002

Google Scholar

[23] M. Peron, R. Bertolini, A. Ghiotti, J. Torgersen, S. Bruschi, F. Berto, Enhancement of stress corrosion cracking of AZ31 magnesium alloy in simulated body fluid thanks to cryogenic machining. J. Mech. Behav. Biomed. Mater. 101(2020)103429.

DOI: 10.1016/j.jmbbm.2019.103429

Google Scholar

[24] M. Linderov, E. Vasilev, D. Merson, M. Markushev, A. Vinogradov, Corrosion Fatigue of Fine Grain Mg-Zn-Zr and Mg-Y-Zn Alloys. Metals 8(1) (2017)20.

DOI: 10.3390/met8010020

Google Scholar

[25] P. Minarik, E. Jablonska, R. Kral, J. Lipov, T. Ruml, C. Blawert, B. Hadzima, F. Chemlík, Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy. Mater. Sci. Eng. C. 73(2017)736–742.

DOI: 10.1016/j.msec.2016.12.120

Google Scholar

[26] M. Peron, P.C. Skaret, A. Fabrizi, A. Varone, R. Montanari, H.J. Roven, P. Ferro, F. Berto, J. Torgersen, The effect of Equal Channel Angular Pressing on the stress corrosion cracking susceptibility of AZ31 alloy in simulated body fluid. J. Mech. Behav. Biomed. Mater. 106(2020)103724.

DOI: 10.1016/j.jmbbm.2020.103724

Google Scholar

[27] W. Wu, Z. Wang, S. Zang, X. Yu, H. Yang, S. Chang, Research Progress on Surface Treatments of Biodegradable Mg Alloys: A Review. ACS Omega 5(2020)941−947.

DOI: 10.1021/acsomega.9b03423

Google Scholar

[28] M. Silion, D. Hritcu, I.M. Jaba, B. Tamba, D. Ionescu, O.C. Mungiu, I.M. Popa, In vitro and in vivo behavior of ketoprofen intercalated into layered double hydroxides. J Mater Sci. Mater Med 21(2010)3009–3018.

DOI: 10.1007/s10856-010-4151-0

Google Scholar

[29] J. Awassa, D. Cornu, S. Soule, C. Carteret, C. Ruby, S. El-Kirat-Chatel, Divalent metal release and antimicrobial effects of layered double hydroxides. Applied Clay Science 216 (2022) 106369.

DOI: 10.1016/j.clay.2021.106369

Google Scholar

[30] L. Guo, F. Zhang, J.C. Lu, R.C. Zeng, S.Q. Li, L. Song, J.M. Zeng, A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys. Front Mater Sci. 12(2018)198–206.

DOI: 10.1007/s11706-018-0415-2

Google Scholar

[31] Q.S. Yao, F. Zhang, L. Song, R.C. Zeng, L.Y. Cui, S.Q. Li, Z.L. Wang, E.H. Han, Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg-Al-layered double hydroxide on AZ31 magnesium alloy. J Alloys Compd. 764(2018)913–928.

DOI: 10.1016/j.jallcom.2018.06.152

Google Scholar

[32] Z. Cai, X. Bu, P. Wang, J.C. Ho, J. Yang, X. Wang, Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 7(2019)5069–5089.

DOI: 10.1039/c8ta11273h

Google Scholar

[33] L. Yan, S. Gonca, G. Zhu, W. Zhang, X. Chen, Layered double hydroxide nanostructures and nanocomposites for biomedical applications. Mater. Chem. B 7(2019)5583–5601.

DOI: 10.1039/c9tb01312a

Google Scholar

[34] U. Costantino, V. Ambrogi, M. Nocchetti, L. Perioli, Hydrotalcite-like compounds: Versatile layered hosts of molecular anions with biological activity. Microporous and Mesoporous Materials 107(2008)149–160.

DOI: 10.1016/j.micromeso.2007.02.005

Google Scholar

[35] V. Ambrogi, M. Ceccarelli, Fixing plate for osteosynthesis of fractured ribs, patent request n. 102019000005638, Italy, 12/4/2019.

Google Scholar

[36] J.L. Arreguin, R. Montanari, M. Ceccarelli, V. Ambrogi, M. Richetta, C.R. Torres-San-Miguel, A. Varone, Design solutions from material selection for rib fixators. Materials Science Forum 1016(2021)303–308.

DOI: 10.4028/www.scientific.net/msf.1016.303

Google Scholar

[37] A. Donnadio, M. Bini, C. Centracchio, M. Mattarelli, S. Caponi, V. Ambrogi, D. Pietrella, A. Di Michele, R. Viviani, M. Nocchetti, Bioinspired Reactive Interfaces Based on Layered Double Hydroxides-Zn Rich Hydroxyapatite with Antibacterial Activity. ACS Biomater. Sci. Eng. 7(2021)1361−1373.

DOI: 10.1021/acsbiomaterials.0c01643

Google Scholar

[38] S. Ryu, H. Jung, J.M. Oh, J. Lee, J. ChoY, Layered double hydroxide as novel antibacterial drug delivery system. Journal of Physics and Chemistry of Solids 71(2010)685–688.

DOI: 10.1016/j.jpcs.2009.12.066

Google Scholar