[1]
M. Richetta, L. Digiamberardino, A. Mattoccia, P.G. Medaglia, R. Montanari, R. Pizzoferrato, D. Scarpellini, A. Varone, C. Falconi, A. Orsini, S. Kaciulis, A. Mezzi, P. Soltani, Surface spectroscopy and structural analysis of nanostructured multifunctional (Zn, Al) layered double hydroxides. Surface and Interface Analysis 48 (2016) 514–518.
DOI: 10.1002/sia.5973
Google Scholar
[2]
M. Richetta, E. Ciotta, R. Montanari, R. Narducci, R. Pizzoferrato, A. Varone, Effect of Al substrate microstructure on layered double hydroxide morphology. J. of Mater. Sciences 54 (2019) 12437–12449.
DOI: 10.1007/s10853-019-03711-5
Google Scholar
[3]
V. Ambrogi, G. Fardella, G. Grandolini, L. Perioli, Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents--I. Intercalation and in vitro release of ibuprofen. Int. J. Pharm. 220 (2001) 23–32.
DOI: 10.1016/s0378-5173(01)00629-9
Google Scholar
[4]
V. Ambrogi, G. Fardella, G. Grandolini, L. Perioli, M.C. Tiralti, Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents, II: uptake of diclofenac for a controlled release formulation. AAPS Pharm. Sci. Tech. 3(2002)E26.
DOI: 10.1208/pt030326
Google Scholar
[5]
Oh Jm, Park Dh, Choi Sj, Choy Jh., LDH Nanocontainers as Bio-Reservoirs and Drug Delivery Carriers. Recent Pat Nanotechnol. 6 (2012)200.
DOI: 10.2174/187221012803531538
Google Scholar
[6]
Soo-Jin Choi & Jin-Ho Choy, Layered double hydroxide nanoparticles as target-specific delivery carriers: uptake mechanism and toxicity. Nanomedicine 6(2011).
DOI: 10.2217/nnm.11.86
Google Scholar
[7]
Dae-Hwan Park, Seong-Ju Hwang, Jae-Min Oh, Jae-Hun Yang, Jin-Ho Choy, Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Progress in Polymer Science 38(2013)1442–1486.
DOI: 10.1016/j.progpolymsci.2013.05.007
Google Scholar
[8]
Z.P. Xu, T.L. Walker, K.-L. Liu, H.M. Cooper, G.Q. Max Lu, P.F. Bartlett, Layered double hydroxide nanoparticles as cellular delivery vectors of supercoiled plasmid DNA. Int. J. Nanomedicine 2 (2007)163–174.
Google Scholar
[9]
Y.S. Yoon, B.I. Lee, K.S. Lee, G.H. Im, S.H. Byeon, J.H. Lee, I.S. Lee, Surface Modification of Exfoliated Layered Gadolinium Hydroxide for the Development of Multimodal Contrast Agents for MRI and Fluorescence Imaging. Adv. Funct. Mater. 19 (2009)3375–3380.
DOI: 10.1002/adfm.200901051
Google Scholar
[10]
J.M. Oh, S.J. Choi, G.E. Lee, S.H. Han, J.H. Choy, Inorganic Drug-Delivery Nanovehicle Conjugated with Cancer-Cell-Specific Ligand. Adv. Func. Mater. 19 (10) (2009)1617–1624.
DOI: 10.1002/adfm.200801127
Google Scholar
[11]
L. Wang, H. Xing, S. Zhang, Q. Ren, L. Pan, K. Zhang, W. Bu, X. Zheng, L. Zhou, W. Peng, Y. Hua, J. Shi, A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imaging and simultaneous drug delivery. Biomaterials 34(13)(2013) 3390–3401.
DOI: 10.1016/j.biomaterials.2013.01.070
Google Scholar
[12]
M. Badar, M. I. Rahim, M. Kieke, T. Ebel, M. Rohde, H. Hauser, P. Behrens, P.P. Mueller, Controlled drug release from antibiotic-loaded layered double hydroxide coatings on porous titanium implants in a mouse model. J. of Biomed. Mater. Res. 103(6)(2015)2141–2149.
DOI: 10.1002/jbm.a.35358
Google Scholar
[13]
C. Taviot-Guého, V. Prévot, C. Forano, G. Renaudin, C. Mousty, F. Leroux, Tailoring Hybrid Layered Double Hydroxides for the Development of Innovative Applications. Advanced Functional Materials 28(27)(2017)1703868.
DOI: 10.1002/adfm.201703868
Google Scholar
[14]
G. Belgheisi, M.H. Nazarpak, M. Solati-Hashjin, Fabrication and evaluation of combined 3D printed/pamidronate-layered double hydroxides enriched electrospun scaffolds for bone tissue engineering applications. Applied Clay Science 225(2022)106538.
DOI: 10.1016/j.clay.2022.106538
Google Scholar
[15]
Y. Zhang, D.I Sun, J. Cheng, J. K. H. Tsoi, J. Chen, Mechanical and biological properties of Ti–(0–25wt%) Nb alloys for biomedical implants application. Regenerative Biomater. 7(2020) 119–127.
DOI: 10.1093/rb/rbz042
Google Scholar
[16]
V. Tsakiris, C. Tardei, F.M. Clinischi, Biodegradable Mg alloys for orthopedic implants - A review. J. of Magnesium and Alloys 9(2021)1884–1905.
DOI: 10.1016/j.jma.2021.06.024
Google Scholar
[17]
A.C. Hänzi, A.S. Sologubenko, P.J. Uggowitzer, Design strategy for new biodegradable Mg-Y-Zn alloys for medical applications. Int. J. Mater. Res. 100(8) (2009)1127–1136.
DOI: 10.3139/146.110157
Google Scholar
[18]
T.C. Mineo, V. Ambrogi, B. Cristino, E. Pompeo, C. Pistolese, Changing indications for thoracotomy in blunt chest trauma after the advent of videothoracoscopy. J. Trauma 47(1999)1088–1091.
DOI: 10.1097/00005373-199912000-00017
Google Scholar
[19]
M. Bemelman, M. Poeze, T.J. Blokhuis, L.P.H. Leenen, Historic Overview of Treatment Techniques for Rib Fractures and Flail Chest. European Journal of Trauma and Emergency Surgery: Official Publication of the European Trauma Society 36(2010)407–415.
DOI: 10.1007/s00068-010-0046-5
Google Scholar
[20]
W.M. Wu, Y. Yang, Z.L. Gao, T.C. Zhao, W.W. He, Which is better to multiple rib fractures, surgical treatment or conservative treatment? Int. J. Clin. Exp. Med. 8(5)(2015)7930–7936.
Google Scholar
[21]
S. Jafari, S.E. Harandi, R.K. Singh Raman, A review of stress-corrosion cracking and corrosion fatigue of magnesium alloys for biodegradable implant applications. JOM 67(5)(2015)1143–1153.
DOI: 10.1007/s11837-015-1366-z
Google Scholar
[22]
S. Jafari, R.K.S. Raman, C.H.J. Davies, Stress corrosion cracking of an extruded magnesium alloy (ZK21) in a simulated body fluid. Eng. Fract. Mech. 201(2018)47–55.
DOI: 10.1016/j.engfracmech.2018.09.002
Google Scholar
[23]
M. Peron, R. Bertolini, A. Ghiotti, J. Torgersen, S. Bruschi, F. Berto, Enhancement of stress corrosion cracking of AZ31 magnesium alloy in simulated body fluid thanks to cryogenic machining. J. Mech. Behav. Biomed. Mater. 101(2020)103429.
DOI: 10.1016/j.jmbbm.2019.103429
Google Scholar
[24]
M. Linderov, E. Vasilev, D. Merson, M. Markushev, A. Vinogradov, Corrosion Fatigue of Fine Grain Mg-Zn-Zr and Mg-Y-Zn Alloys. Metals 8(1) (2017)20.
DOI: 10.3390/met8010020
Google Scholar
[25]
P. Minarik, E. Jablonska, R. Kral, J. Lipov, T. Ruml, C. Blawert, B. Hadzima, F. Chemlík, Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy. Mater. Sci. Eng. C. 73(2017)736–742.
DOI: 10.1016/j.msec.2016.12.120
Google Scholar
[26]
M. Peron, P.C. Skaret, A. Fabrizi, A. Varone, R. Montanari, H.J. Roven, P. Ferro, F. Berto, J. Torgersen, The effect of Equal Channel Angular Pressing on the stress corrosion cracking susceptibility of AZ31 alloy in simulated body fluid. J. Mech. Behav. Biomed. Mater. 106(2020)103724.
DOI: 10.1016/j.jmbbm.2020.103724
Google Scholar
[27]
W. Wu, Z. Wang, S. Zang, X. Yu, H. Yang, S. Chang, Research Progress on Surface Treatments of Biodegradable Mg Alloys: A Review. ACS Omega 5(2020)941−947.
DOI: 10.1021/acsomega.9b03423
Google Scholar
[28]
M. Silion, D. Hritcu, I.M. Jaba, B. Tamba, D. Ionescu, O.C. Mungiu, I.M. Popa, In vitro and in vivo behavior of ketoprofen intercalated into layered double hydroxides. J Mater Sci. Mater Med 21(2010)3009–3018.
DOI: 10.1007/s10856-010-4151-0
Google Scholar
[29]
J. Awassa, D. Cornu, S. Soule, C. Carteret, C. Ruby, S. El-Kirat-Chatel, Divalent metal release and antimicrobial effects of layered double hydroxides. Applied Clay Science 216 (2022) 106369.
DOI: 10.1016/j.clay.2021.106369
Google Scholar
[30]
L. Guo, F. Zhang, J.C. Lu, R.C. Zeng, S.Q. Li, L. Song, J.M. Zeng, A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys. Front Mater Sci. 12(2018)198–206.
DOI: 10.1007/s11706-018-0415-2
Google Scholar
[31]
Q.S. Yao, F. Zhang, L. Song, R.C. Zeng, L.Y. Cui, S.Q. Li, Z.L. Wang, E.H. Han, Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg-Al-layered double hydroxide on AZ31 magnesium alloy. J Alloys Compd. 764(2018)913–928.
DOI: 10.1016/j.jallcom.2018.06.152
Google Scholar
[32]
Z. Cai, X. Bu, P. Wang, J.C. Ho, J. Yang, X. Wang, Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 7(2019)5069–5089.
DOI: 10.1039/c8ta11273h
Google Scholar
[33]
L. Yan, S. Gonca, G. Zhu, W. Zhang, X. Chen, Layered double hydroxide nanostructures and nanocomposites for biomedical applications. Mater. Chem. B 7(2019)5583–5601.
DOI: 10.1039/c9tb01312a
Google Scholar
[34]
U. Costantino, V. Ambrogi, M. Nocchetti, L. Perioli, Hydrotalcite-like compounds: Versatile layered hosts of molecular anions with biological activity. Microporous and Mesoporous Materials 107(2008)149–160.
DOI: 10.1016/j.micromeso.2007.02.005
Google Scholar
[35]
V. Ambrogi, M. Ceccarelli, Fixing plate for osteosynthesis of fractured ribs, patent request n. 102019000005638, Italy, 12/4/2019.
Google Scholar
[36]
J.L. Arreguin, R. Montanari, M. Ceccarelli, V. Ambrogi, M. Richetta, C.R. Torres-San-Miguel, A. Varone, Design solutions from material selection for rib fixators. Materials Science Forum 1016(2021)303–308.
DOI: 10.4028/www.scientific.net/msf.1016.303
Google Scholar
[37]
A. Donnadio, M. Bini, C. Centracchio, M. Mattarelli, S. Caponi, V. Ambrogi, D. Pietrella, A. Di Michele, R. Viviani, M. Nocchetti, Bioinspired Reactive Interfaces Based on Layered Double Hydroxides-Zn Rich Hydroxyapatite with Antibacterial Activity. ACS Biomater. Sci. Eng. 7(2021)1361−1373.
DOI: 10.1021/acsbiomaterials.0c01643
Google Scholar
[38]
S. Ryu, H. Jung, J.M. Oh, J. Lee, J. ChoY, Layered double hydroxide as novel antibacterial drug delivery system. Journal of Physics and Chemistry of Solids 71(2010)685–688.
DOI: 10.1016/j.jpcs.2009.12.066
Google Scholar