[1]
C.M. Wayman and T.W. Duerig, An Introduction to Martensite and Shape Memory, in: T.W. Duerig, K. N. Melton, D. Stöckel, C. M. Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann Ltd, 1990, pp.3-20
DOI: 10.1016/b978-0-7506-1009-4.50005-6
Google Scholar
[2]
K. Safaei, H. Abedi, M. Nematollahi, F. Kordizadeh, H. Dabbaghi, P. Bayati, R. Javanbakht, A. Jahadakbar, M. Elahinia, B. Poorganji, Additive Manufacturing of NiTi Shape Memory Alloy for Biomedical Applications: Review of the LPBF Process Ecosystem, JOM 73(12) (2021) 3771-3786.
DOI: 10.1007/s11837-021-04937-y
Google Scholar
[3]
G. Coppi, R. Pacchioni, R. Moratto, S. Gennai, G.A. Farello, G. Bergamaschi, C. Rabbia, D. Rossato, F. Ponzio, V. Stancanelli, E. Piccinini, Experience with the Stentor endograft at four Italian centers, J. of Endovasc. Surg. 5(3) (1998) 206-215.
DOI: 10.1177/152660289800500304
Google Scholar
[4]
A.A. Giannopoulos, D. Mitsouras, S.J. Yoo, P.P. Liu, Y.S. Chatzizisis, F.J. Rybicki, Applications of 3D printing in cardiovascular diseases, Nat. Rev. Cardiol. 13(12) (2016) 701-718
DOI: 10.1038/nrcardio.2016.170
Google Scholar
[5]
S. Saedi, N. Shayesteh Moghaddam, A. Amerinatanzi, M. Elahinia, H. E. Karaca, On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi, Acta Materialia 144 (2018) 552-560
DOI: 10.1016/j.actamat.2017.10.072
Google Scholar
[6]
N. Shayesteh Moghaddam, S. Saedi, A. Amerinatanzi, A. Hinojos, A. Ramazani, J. Kundin, M.J. Mills, H. Karaca, M. Elahinia, 2019. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Scientific Rep. 9(1), 41
DOI: 10.1038/s41598-018-36641-4
Google Scholar
[7]
M.A. Obeidi, M. Monu, C. Hughes, D. Bourke, M.N. Dogu, J. Francis, M. Zhang, I.U. Ahad, D. Brabazon, Laser beam powder bed fusion of nitinol shape memory alloy (SMA), J. of Mater. Research and Technol. 14 (2021) 2554-2570
DOI: 10.1016/j.jmrt.2021.07.126
Google Scholar
[8]
E. Farber, J.N. Zhu, A. Popovich, V. Popovich, A review of NiTi shape memory alloy as a smart material produced by additive manufacturing, Mater. Today: Proc. 30 (2019) 761-767
DOI: 10.1016/j.matpr.2020.01.563
Google Scholar
[9]
S. Saedi, A.S. Turabi, M.T. Andani, C. Haberland, H. Karaca, M. Elahinia, The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting, J. of Alloys and Compounds 677 (2016) 204-210
DOI: 10.1016/j.jallcom.2016.03.161
Google Scholar
[10]
S. Saedi, A.S. Turabi, M.T. Andani, N. S. Moghaddam, M. Elahinia, H. E. Karaca, Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys, Mater. Sci. and Eng. A 686 (2017) 1-10
DOI: 10.1016/j.msea.2017.01.008
Google Scholar
[11]
K. Khanlari, Q. Shi, K. Li, K. Hu, P. Cao, X. Liu, Effects of printing volumetric energy densities and post-processing treatments on the microstructural properties, phase transformation temperatures and hardness of near-equiatomic NiTinol parts fabricated by a laser powder bed fusion technique. Intermetallics 131 (2021), 107088
DOI: 10.1016/j.intermet.2021.107088
Google Scholar
[12]
H. Shahmir, M. Nili-Ahmadabadi, F. Naghdi, Superelastic behavior of aged and thermomechanical treated NiTi alloy at Af+10°C, Mater. and Des. 32 (1) (2011) 365-370, (2011)
DOI: 10.1016/j.matdes.2010.06.022
Google Scholar
[13]
K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. in Mater. Sci. 50(5) (2005) 511-678
DOI: 10.1016/j.pmatsci.2004.10.001
Google Scholar
[14]
S. Maffia, V. Finazzi, F. Berti, F. Migliavacca, L. Petrini, B. Previtali, A.G. Demir, Selective laser melting of NiTi stents with open-cell and variable diameter, 2021. Smart Mater. and Structures. 30(10), 105010
DOI: 10.1088/1361-665x/ac1908
Google Scholar
[15]
P. Jamshidi, C. Panwisawas, E. Langi, S.C. Cox, J. Feng, L. Zhao, M.M. Attallah, Development, characterisation, and modelling of processability of nitinol stents using laser powder bed fusion. J. of Alloys and Compounds 909 (2022), 164681
DOI: 10.1016/j.jallcom.2022.164681
Google Scholar
[16]
L. Yan et al., Evaluation and characterization of nitinol stents produced by selective laser melting with various process parameters, Progress in Additive Manufacturing 7 (6) (2022) 1141-1153
DOI: 10.1007/s40964-022-00289-4
Google Scholar
[17]
ISO 25539-2 Cardiovascular implants - Endovascular devices - Part 2: Vascular stents, 2021.
DOI: 10.2345/9781570204807.ch1
Google Scholar
[18]
K. Khanlari, M. Ramezani, P. Kelly, P. Cao, T. Neitzert, Mechanical and microstructural characteristics of as-sintered and solutionized porous 60NiTi, Intermetallics 100 (2018) 32-43
DOI: 10.1016/j.intermet.2018.06.001
Google Scholar
[19]
T. W. Duerig, K. Bhattacharya, The Influence of the R-Phase on the Superelastic Behavior of NiTi, Shape Memory and Superelasticity 1(2) (2015) 153-161
DOI: 10.1007/s40830-015-0013-4
Google Scholar
[20]
J. A. Shaw, C. B. Churchill, M. A. Iadicola, Tips and tricks for characterizing shape memory alloy wire: Part 1-differential scanning calorimetry and basic phenomena, Exp. Techniques 32(5) (2008) 55-62
DOI: 10.1111/j.1747-1567.2008.00410.x
Google Scholar
[21]
D. B. Chernov, Y. I. Paskal, V. E. Gyunter, L. A. Monasevich, E. M. Savitskii, The Multiplicity of Structural Transitions in Alloy Based on TiNi, Doklady Akademii Nauk SSSR 247 (1979) 854-857
Google Scholar
[22]
C. Della Corte, G. Glennon, Ball Bearings Comprising Nickel-Titanium and Methods of Manufacturing Thereof, (2012)
Google Scholar
[23]
M. Nishida, C. M. Wayman, T. Honma, Precipitation processes in near-equiatomic TiNi shape memory alloys, Metall. Transactions A 17(9) (1986) 1505-1515
DOI: 10.1007/bf02650086
Google Scholar
[24]
C. Brandt-Wunderlich, W. Schmidt, N. Grabow, M. Stiehm, S. Siewert, R. Andresen, K.P. Schmitz, Support function of self-expanding nitinol stents - Are radial resistive force and crush resistance comparable?, Curr. Directions in Biomed. Eng. 5(1) (2019) 465-467
DOI: 10.1515/cdbme-2019-0117
Google Scholar
[25]
G.P. Kumar, K. Zuo, L. B. Koh, C. W. Ong, Y. Zhong, H. L. Leo, P. Ho, F. Cui, Effect of number of crowns on the crush resistance in open-cell stent design, J. of Mechanics of Mater. and Structures 15 (1) (2020) 75-86
DOI: 10.2140/jomms.2020.15.75
Google Scholar
[26]
D. Dabir, A. Feisst, D. Thomas, J. A. Luetkens, C. Meyer, A. Kardulovic, M. Menne, U. Steinseifer, H. H. Schild, D. L. R. Kuettinget, Physical Properties of Venous Stents: An Experimental Comparison, Cardiovasc. and Interventional Radiol. 41 (6) (2018) 942-950
DOI: 10.1007/s00270-018-1916-1
Google Scholar