Effect of Heat Treatments on Microstructure and Mechanical Properties of Nitinol Prototype Stents Produced by Laser Powder Bed Fusion

Article Preview

Abstract:

Laser Powder Bed Fusion (L-PBF) is turning out to be very promising for biomedical components production and stents are among the devices that would be suitable for tailor-made production. One of the most common stent types are the self-expandable, manufactured with Nitinol (NiTi). The use of NiTi alloy with L-PBF needs to be well controlled, as Ni evaporation during the process leads to significant variations in the final component properties. In the present work, prototype NiTi stents were produced via L-PBF and heat treated to examine the possibility of employing this technology for their application, also considering the Ni evaporation resulting from the layer-by-layer deposition. Samples were characterized through differential scanning calorimetry (DSC), microstructural observations, and compression tests in plate-to-plate configuration according to the standard. In parallel, a commercially available stent manufactured with traditional technology was tested for comparison.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-149

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.M. Wayman and T.W. Duerig, An Introduction to Martensite and Shape Memory, in: T.W. Duerig, K. N. Melton, D. Stöckel, C. M. Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann Ltd, 1990, pp.3-20

DOI: 10.1016/b978-0-7506-1009-4.50005-6

Google Scholar

[2] K. Safaei, H. Abedi, M. Nematollahi, F. Kordizadeh, H. Dabbaghi, P. Bayati, R. Javanbakht, A. Jahadakbar, M. Elahinia, B. Poorganji, Additive Manufacturing of NiTi Shape Memory Alloy for Biomedical Applications: Review of the LPBF Process Ecosystem, JOM 73(12) (2021) 3771-3786.

DOI: 10.1007/s11837-021-04937-y

Google Scholar

[3] G. Coppi, R. Pacchioni, R. Moratto, S. Gennai, G.A. Farello, G. Bergamaschi, C. Rabbia, D. Rossato, F. Ponzio, V. Stancanelli, E. Piccinini, Experience with the Stentor endograft at four Italian centers, J. of Endovasc. Surg. 5(3) (1998) 206-215.

DOI: 10.1177/152660289800500304

Google Scholar

[4] A.A. Giannopoulos, D. Mitsouras, S.J. Yoo, P.P. Liu, Y.S. Chatzizisis, F.J. Rybicki, Applications of 3D printing in cardiovascular diseases, Nat. Rev. Cardiol. 13(12) (2016) 701-718

DOI: 10.1038/nrcardio.2016.170

Google Scholar

[5] S. Saedi, N. Shayesteh Moghaddam, A. Amerinatanzi, M. Elahinia, H. E. Karaca, On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi, Acta Materialia 144 (2018) 552-560

DOI: 10.1016/j.actamat.2017.10.072

Google Scholar

[6] N. Shayesteh Moghaddam, S. Saedi, A. Amerinatanzi, A. Hinojos, A. Ramazani, J. Kundin, M.J. Mills, H. Karaca, M. Elahinia, 2019. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment. Scientific Rep. 9(1), 41

DOI: 10.1038/s41598-018-36641-4

Google Scholar

[7] M.A. Obeidi, M. Monu, C. Hughes, D. Bourke, M.N. Dogu, J. Francis, M. Zhang, I.U. Ahad, D. Brabazon, Laser beam powder bed fusion of nitinol shape memory alloy (SMA), J. of Mater. Research and Technol. 14 (2021) 2554-2570

DOI: 10.1016/j.jmrt.2021.07.126

Google Scholar

[8] E. Farber, J.N. Zhu, A. Popovich, V. Popovich, A review of NiTi shape memory alloy as a smart material produced by additive manufacturing, Mater. Today: Proc. 30 (2019) 761-767

DOI: 10.1016/j.matpr.2020.01.563

Google Scholar

[9] S. Saedi, A.S. Turabi, M.T. Andani, C. Haberland, H. Karaca, M. Elahinia, The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting, J. of Alloys and Compounds 677 (2016) 204-210

DOI: 10.1016/j.jallcom.2016.03.161

Google Scholar

[10] S. Saedi, A.S. Turabi, M.T. Andani, N. S. Moghaddam, M. Elahinia, H. E. Karaca, Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys, Mater. Sci. and Eng. A 686 (2017) 1-10

DOI: 10.1016/j.msea.2017.01.008

Google Scholar

[11] K. Khanlari, Q. Shi, K. Li, K. Hu, P. Cao, X. Liu, Effects of printing volumetric energy densities and post-processing treatments on the microstructural properties, phase transformation temperatures and hardness of near-equiatomic NiTinol parts fabricated by a laser powder bed fusion technique. Intermetallics 131 (2021), 107088

DOI: 10.1016/j.intermet.2021.107088

Google Scholar

[12] H. Shahmir, M. Nili-Ahmadabadi, F. Naghdi, Superelastic behavior of aged and thermomechanical treated NiTi alloy at Af+10°C, Mater. and Des. 32 (1) (2011) 365-370, (2011)

DOI: 10.1016/j.matdes.2010.06.022

Google Scholar

[13] K. Otsuka, X. Ren, Physical metallurgy of Ti-Ni-based shape memory alloys, Prog. in Mater. Sci. 50(5) (2005) 511-678

DOI: 10.1016/j.pmatsci.2004.10.001

Google Scholar

[14] S. Maffia, V. Finazzi, F. Berti, F. Migliavacca, L. Petrini, B. Previtali, A.G. Demir, Selective laser melting of NiTi stents with open-cell and variable diameter, 2021. Smart Mater. and Structures. 30(10), 105010

DOI: 10.1088/1361-665x/ac1908

Google Scholar

[15] P. Jamshidi, C. Panwisawas, E. Langi, S.C. Cox, J. Feng, L. Zhao, M.M. Attallah, Development, characterisation, and modelling of processability of nitinol stents using laser powder bed fusion. J. of Alloys and Compounds 909 (2022), 164681

DOI: 10.1016/j.jallcom.2022.164681

Google Scholar

[16] L. Yan et al., Evaluation and characterization of nitinol stents produced by selective laser melting with various process parameters, Progress in Additive Manufacturing 7 (6) (2022) 1141-1153

DOI: 10.1007/s40964-022-00289-4

Google Scholar

[17] ISO 25539-2 Cardiovascular implants - Endovascular devices - Part 2: Vascular stents, 2021.

DOI: 10.2345/9781570204807.ch1

Google Scholar

[18] K. Khanlari, M. Ramezani, P. Kelly, P. Cao, T. Neitzert, Mechanical and microstructural characteristics of as-sintered and solutionized porous 60NiTi, Intermetallics 100 (2018) 32-43

DOI: 10.1016/j.intermet.2018.06.001

Google Scholar

[19] T. W. Duerig, K. Bhattacharya, The Influence of the R-Phase on the Superelastic Behavior of NiTi, Shape Memory and Superelasticity 1(2) (2015) 153-161

DOI: 10.1007/s40830-015-0013-4

Google Scholar

[20] J. A. Shaw, C. B. Churchill, M. A. Iadicola, Tips and tricks for characterizing shape memory alloy wire: Part 1-differential scanning calorimetry and basic phenomena, Exp. Techniques 32(5) (2008) 55-62

DOI: 10.1111/j.1747-1567.2008.00410.x

Google Scholar

[21] D. B. Chernov, Y. I. Paskal, V. E. Gyunter, L. A. Monasevich, E. M. Savitskii, The Multiplicity of Structural Transitions in Alloy Based on TiNi, Doklady Akademii Nauk SSSR 247 (1979) 854-857

Google Scholar

[22] C. Della Corte, G. Glennon, Ball Bearings Comprising Nickel-Titanium and Methods of Manufacturing Thereof, (2012)

Google Scholar

[23] M. Nishida, C. M. Wayman, T. Honma, Precipitation processes in near-equiatomic TiNi shape memory alloys, Metall. Transactions A 17(9) (1986) 1505-1515

DOI: 10.1007/bf02650086

Google Scholar

[24] C. Brandt-Wunderlich, W. Schmidt, N. Grabow, M. Stiehm, S. Siewert, R. Andresen, K.P. Schmitz, Support function of self-expanding nitinol stents - Are radial resistive force and crush resistance comparable?, Curr. Directions in Biomed. Eng. 5(1) (2019) 465-467

DOI: 10.1515/cdbme-2019-0117

Google Scholar

[25] G.P. Kumar, K. Zuo, L. B. Koh, C. W. Ong, Y. Zhong, H. L. Leo, P. Ho, F. Cui, Effect of number of crowns on the crush resistance in open-cell stent design, J. of Mechanics of Mater. and Structures 15 (1) (2020) 75-86

DOI: 10.2140/jomms.2020.15.75

Google Scholar

[26] D. Dabir, A. Feisst, D. Thomas, J. A. Luetkens, C. Meyer, A. Kardulovic, M. Menne, U. Steinseifer, H. H. Schild, D. L. R. Kuettinget, Physical Properties of Venous Stents: An Experimental Comparison, Cardiovasc. and Interventional Radiol. 41 (6) (2018) 942-950

DOI: 10.1007/s00270-018-1916-1

Google Scholar