Can Multifunctionality of Bioresorbable BMGs be Tuned by Controlling Crystallinity?

Article Preview

Abstract:

Ca-Mg-Zn bulk metallic glasses (BMGs) are promising biomaterials for orthopaedic applications because when they get reabsorbed, a retrieval surgery is not needed. In this study, Ca-Mg-Zn metallic glasses with different compositions, Ca56.02Mg20.26Zn23.72 and Zn50.72Mg23.44Ca25.84, were fabricated by induction melting followed by copper mould casting. Their degree of crystallinity was modified by annealing, obtaining exemplar specimens of fully amorphous, partially amorphous (i.e., a BMG composite (BMGC)) and fully crystalline alloys. The microstructure, thermodynamic and corrosion performance of these alloys were evaluated as well as their electrochemical behaviour. The results of polarisation tests demonstrate that the corrosion resistance of the Zn-rich alloy is markedly better than the Ca-rich BMG. Corrosion rates of these Ca-and Zn-rich alloys with different degrees of crystallinity illustrate that the corrosion behaviours of alloys strongly depend on their microstructure, which shows a positive correlation between the corrosion current density and the crystallised volume fraction of the alloy. This study aims to shed light on the impact of the amorphicity-to-crystallinity ratio on the multifunctional properties of BMGs/BMGCs, and to assess how feasible it is to fine-tune those properties by controlling the percentage of crystallinity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-136

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Puleo, D.A. and Huh, W.W., 1995. Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells. Journal of Applied Biomaterials, 6(2), pp.109-116.

DOI: 10.1002/jab.770060205

Google Scholar

[2] Staiger, M.P., Pietak, A.M., Huadmai, J. and Dias, G., 2006. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 27(9), pp.1728-1734.

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[3] Axinte, E., 2012. Metallic glasses from "alchemy" to pure science: Present and future of design, processing and applications of glassy metals. Materials & Design, 35, pp.518-556.

DOI: 10.1016/j.matdes.2011.09.028

Google Scholar

[4] Wang, X., Gong, P. and Yao, K.F., 2016. Mechanical behavior of bulk metallic glass prepared by copper mold casting with reversed pressure. Journal of Materials Processing Technology, 237, pp.270-276.

DOI: 10.1016/j.jmatprotec.2016.06.023

Google Scholar

[5] Gu, X., Zheng, Y., Zhong, S., Xi, T., Wang, J. and Wang, W., 2010. Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials, 31(6), pp.1093-1103.

DOI: 10.1016/j.biomaterials.2009.11.015

Google Scholar

[6] Wang, Y.B., Xie, X.H., Li, H.F., Wang, X.L., Zhao, M.Z., Zhang, E.W., Bai, Y.J., Zheng, Y.F. and Qin, L., 2011. Biodegradable CaMgZn bulk metallic glass for potential skeletal application. Acta biomaterialia, 7(8), pp.3196-3208.

DOI: 10.1016/j.actbio.2011.04.027

Google Scholar

[7] Wang, G., Liaw, P.K., Senkov, O.N., Miracle, D.B. and Morrison, M.L., 2009. Mechanical and Fatigue Behavior of Ca65Mg15Zn20 Bulk‐Metallic Glass. Advanced Engineering Materials, 11(1‐2), pp.27-34.

DOI: 10.1002/adem.200800313

Google Scholar

[8] Morrison, M.L., Buchanan, R.A., Liaw, P.K., Senkov, O.N. and Miracle, D.B., 2006. Electrochemical behavior of Ca-based bulk metallic glasses. Metallurgical and Materials Transactions A, 37(4), pp.1239-1245.

DOI: 10.1007/s11661-006-1075-x

Google Scholar

[9] Zberg, B., Uggowitzer, P.J. and Löffler, J.F., 2009. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature materials, 8(11), pp.887-891.

DOI: 10.1038/nmat2542

Google Scholar

[10] Li, H., Pang, S., Liu, Y., Sun, L., Liaw, P.K. and Zhang, T., 2015. Biodegradable Mg–Zn–Ca–Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications. Materials & Design, 67, pp.9-19.

DOI: 10.1016/j.matdes.2014.10.085

Google Scholar

[11] Mudali, U.K., Scudino, S., Kühn, U., Eckert, J. and Gebert, A., 2004. Polarisation behaviour of the Zr57Ti8Nb2. 5Cu13. 9Ni11. 1Al7. 5 alloy in different microstructural states in acid solutions. Scripta materialia, 50(11), pp.1379-1384.

DOI: 10.1016/j.scriptamat.2004.02.039

Google Scholar

[12] Inoue, A., 2000. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta materialia, 48(1), pp.279-306.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[13] Senkov, O.N. and Scott, J.M., 2005. Glass forming ability and thermal stability of ternary Ca–Mg–Zn bulk metallic glasses. Journal of non-crystalline solids, 351(37-39), pp.3087-3094.

DOI: 10.1016/j.jnoncrysol.2005.07.022

Google Scholar

[14] Hu, L. and Ye, F., 2013. Crystallization kinetics of Ca65Mg15Zn20 bulk metallic glass. Journal of alloys and compounds, 557, pp.160-165.

DOI: 10.1016/j.jallcom.2012.12.158

Google Scholar

[15] Chen, L.C. and Spaepen, F., 1988. Calorimetric evidence for the micro-quasicrystalline structure of'amorphous' Al/transition metal alloys. Nature, 336(6197), pp.366-368.

DOI: 10.1038/336366a0

Google Scholar

[16] McCafferty, E., 2005. Validation of corrosion rates measured by the Tafel extrapolation method. Corrosion science, 47(12), pp.3202-3215.

DOI: 10.1016/j.corsci.2005.05.046

Google Scholar

[17] Jiang, L., Chen, Z.Q., Lu, H.B., Ke, H.B., Yuan, Y., Dong, Y.M. and Meng, X.K., 2021. Corrosion protection of NiNb metallic glass coatings for 316SS by magnetron sputtering. Journal of Materials Science & Technology, 79, pp.88-98.

DOI: 10.1016/j.jmst.2020.12.004

Google Scholar

[18] Wang, Y., Tan, M.J., Pang, J., Wang, Z. and Jarfors, A.W., 2012. In vitro corrosion behaviors of Mg67Zn28Ca5 alloy: from amorphous to crystalline. Materials Chemistry and Physics, 134(2-3), pp.1079-1087.

DOI: 10.1016/j.matchemphys.2012.03.116

Google Scholar