[1]
K. H. Lee and G. J. Yun, Prediction of melt pool dimension and residual stress evolution with thermodynamically-consistent phase field and consolidation models during re-melting process of SLM, Computers, Materials and Continua (2021) vol. 66, no. 1, p.87–112.
DOI: 10.32604/cmc.2020.012688
Google Scholar
[2]
J. Metelkova, Y. Kinds, K. Kempen, C. de Formanoir, A. Witvrouw and B. Van Hooreweder, On the influence of laser defocusing in Selective Laser Melting of 316L, Additive Manufacturing (2018) vol. 23, p.161–169.
DOI: 10.1016/j.addma.2018.08.006
Google Scholar
[3]
J. J. S. Dilip, M. A. Anam, D. Pal, and B. Stucker, A short study on the fabrication of single track deposits in SLM and characterization, Solid Free. Fabr. 2016 Proc. 27th Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF, 2016, p.1644–1659.
Google Scholar
[4]
C. Y. Yap et al., Review of selective laser melting: Materials and applications, Applied Physics Reviews (2015) vol. 2, no. 4.
Google Scholar
[5]
F. Bartolomeu et al., 316L stainless steel mechanical and tribological behavior—A comparison between selective laser melting, hot pressing and conventional casting, Additive Manufacturing (2017) vol. 16, no. 2010, p.81–89.
DOI: 10.1016/j.addma.2017.05.007
Google Scholar
[6]
W. E. King et al., Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges, Applied Physics Reviews (2015) vol. 2, no. 4, p.041304.
DOI: 10.1063/1.4937809
Google Scholar
[7]
T. Kurzynowski, W. Stopyra, K. Gruber, G. Ziólkowski, B. Kuznicka, and E. Chlebus, Effect of scanning and support strategies on relative density of SLM-ed H13 steel in relation to specimen size, Materials (Basel) (2019) vol. 12, no. 2.
DOI: 10.3390/ma12020239
Google Scholar
[8]
Q. Shi, D. Gu, M. Xia, S. Cao, and T. Rong, Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites, Optics & Laser Technology (2016) vol. 84, p.9–22.
DOI: 10.1016/j.optlastec.2016.04.009
Google Scholar
[9]
H. E. Sabzi and P. E. J. Rivera-Díaz-del-Castillo, Defect prevention in selective laser melting components: Compositional and process effects, Materials (Basel) (2019) vol. 12, no. 22.
DOI: 10.3390/ma12223791
Google Scholar
[10]
J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, Selective laser melting of iron-based powder, Journal of Materials Processing Technology (2004) vol. 149, no. 1–3, p.616–622.
DOI: 10.1016/j.jmatprotec.2003.11.051
Google Scholar
[11]
N. K. Tolochko, M. K. Arshinov, A. V. Gusarov, V. I. Titov, T. Laoui, and L. Froyen, Mechanisms of selective laser sintering and heat transfer in Ti powder, Rapid Prototyping Journal (2003) vol. 9, no. 5, p.314–326.
DOI: 10.1108/13552540310502211
Google Scholar
[12]
J. J. S. Dilip et al., Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting, Progress in Additive Manufacturing (2017) vol. 2, no. 3, p.157–167.
DOI: 10.1007/s40964-017-0030-2
Google Scholar
[13]
I. Yadroitsev, A. Gusarov, I. Yadroitsava and I. Smurov, Single track formation in selective laser melting of metal powders, Journal of Materials Processing Technology (2010) vol. 210, no. 12, p.1624–1631.
DOI: 10.1016/j.jmatprotec.2010.05.010
Google Scholar
[14]
N. W. Makoana, I. Yadroitsava, H. Möller, and I. Yadroitsev, Characterization of 17-4ph single tracks produced at different parametric conditions towards increased productivity of lpbf systems—the effect of laser power and spot size upscaling, Metals (Basel) (2018) vol. 8, no. 7.
DOI: 10.3390/met8070475
Google Scholar
[15]
R. Li, Y. Shi, J. Liu, H. Yao, and W. Zhang, Effects of processing parameters on the temperature field of selective laser melting metal powder, Powder Metallurgy and Metal Ceramics (2009) vol. 48, no. 3–4, p.186–195.
DOI: 10.1007/s11106-009-9113-z
Google Scholar
[16]
Q. Han, R. Setchi, S. L. Evans, and C. Qiu, Three-dimensional finite element thermal analysis in selective laser melting of Al-Al2O3 powder, Solid Free. Fabr. 2016 Proc. 27th Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF, 2016, p.131–150.
Google Scholar
[17]
W. E. King et al., Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, Journal of Materials Processing Technology (2014) vol. 214, no. 12, p.2915–2925.
DOI: 10.1016/j.jmatprotec.2014.06.005
Google Scholar
[18]
M. F. Zäh and S. Lutzmann, Modelling and simulation of electron beam melting, Production Engineering (2010) vol. 4, no. 1, p.15–23.
DOI: 10.1007/s11740-009-0197-6
Google Scholar
[19]
C. Duan, M. Zhao, and X. Luo, Thermal Behavior and Densification Mechanism during Selective Laser Melting Additive Manufacturing of Metal Powder, Steel research international (2020) vol. 91, no. 8, p.1–13.
DOI: 10.1002/srin.202000073
Google Scholar
[20]
P. Yuan and D. Gu, Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: Simulation and experiments, Journal of Physics D: Applied Physics (2015) vol. 48, no. 3, p.35303.
DOI: 10.1088/0022-3727/48/3/035303
Google Scholar
[21]
M. Labudovic, D. Hu and R. Kovacevic, A three dimensional model for direct laser metal powder deposition and rapid prototyping, Journal of Materials Science (2003) vol. 38, no. 1, p.35–49.
Google Scholar
[22]
T. Voisin et al., Defects-dictated tensile properties of selective laser melted Ti-6Al-4V, Materials & Design (2018) vol. 158, p.113–126.
DOI: 10.1016/j.matdes.2018.08.004
Google Scholar
[23]
L. Johnson et al., Assessing printability maps in additive manufacturing of metal alloys, Acta Mater. (2019) vol. 176, p.199–210.
Google Scholar
[24]
A.D. Canonsburg, Additive User's Guide (Print and Science), 2019.
Google Scholar
[25]
C.H. Fu and Y. B. Guo, Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4V, J. Manuf. Sci. Eng. Trans. ASME (2014) vol. 136, no. 6, p.1–8.
DOI: 10.1115/1.4028539
Google Scholar
[26]
L. Zheng et al., Melt pool boundary extraction and its width prediction from infrared images in selective laser melting, Materials & Design (2019) vol. 183, p.108110.
DOI: 10.1016/j.matdes.2019.108110
Google Scholar
[27]
E. Santecchia, S. Spigarelli and M. Cabibbo, Material reuse in laser powder bed fusion: Side effects of the laser—metal powder interaction, Metals (Basel) (2020) vol. 10, no. 3, p.1–21.
DOI: 10.3390/met10030341
Google Scholar
[28]
T. Mukherjee, J. S. Zuback, A. De and T. DebRoy, Printability of alloys for additive manufacturing, Scientific Reports (2016) vol. 6, p.1–8.
DOI: 10.1038/srep19717
Google Scholar
[29]
J.C. Ion, H.R. Shercliff, and M. F. Ashby, Diagrams for laser materials processing, Acta Metall. Mater. (1992) vol. 40, no. 7, p.1539–1551.
DOI: 10.1016/0956-7151(92)90097-x
Google Scholar
[30]
K. Li, Z. Zhao, H. Zhou, H. Zhou, and J. Jin, Numerical analyses of molten pool evolution in laser polishing Ti6Al4V, Journal of Manufacturing Processes (2020) vol. 58, no. May, pp.574-584.
DOI: 10.1016/j.jmapro.2020.08.045
Google Scholar
[31]
P. A. Hooper, Melt pool temperature and cooling rates in laser powder bed fusion, Additive Manufacturing (2018) vol. 22, p.548–559.
DOI: 10.1016/j.addma.2018.05.032
Google Scholar
[32]
E. Mirkoohi, J. Ning, P. Bocchini, O. Fergani, K.-N. Chiang and S. Liang, Thermal Modeling of Temperature Distribution in Metal Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties, Journal of Manufacturing and Materials Processing (2018) vol. 2, no. 3, p.63.
DOI: 10.3390/jmmp2030063
Google Scholar