[1]
Z.G. Chen, G. Hana, L. Yanga, L. Cheng, J. Zou, Nanostructured thermoelectric materials: Current research and future challenge, Prog. Nat. Sci. Mater. Int. 22 (2012) 535–549.
DOI: 10.1016/j.pnsc.2012.11.011
Google Scholar
[2]
M.N. Hasan, H. Wahid, N. Nayan, M.S. Mohamed Ali, Inorganic thermoelectric materials: A review, Int. J. Energy Res. 44 (2020) 6170–6222.
DOI: 10.1002/er.5313
Google Scholar
[3]
H.S. Lee, Thermoelectrics: Design and materials, Thermoelectr. Des. Mater. (2016) 1–420.
DOI: 10.1002/9781118848944
Google Scholar
[4]
S. Wango, Smart Power Generation From Waste Heat By Thermo Electric Generator 45, Int. J. Mech. Prod. Eng. (2016) 2320–2092.
Google Scholar
[5]
N.K. Singh, S. Bathula, B. Gahtori, K. Tyagi, D. Haranath, A. Dhar, The effect of doping on thermoelectric performance of p-type SnSe: Promising thermoelectric material, J. Alloys Compd. 668 (2016) 152–158.
DOI: 10.1016/j.jallcom.2016.01.190
Google Scholar
[6]
K. Takayama, M. Takashiri, Multi-layered-stack thermoelectric generators using p-type Sb2Te3 and n-type Bi2Te3 thin films by radio-frequency magnetron sputtering, Vacuum. 144 (2017) 164–171.
DOI: 10.1016/j.vacuum.2017.07.030
Google Scholar
[7]
M.R. Burton, C.A. Boyle, T. Liu, J. McGettrick, I. Nandhakumar, O. Fenwick, M.J. Carnie, Full Thermoelectric Characterization of Stoichiometric Electrodeposited Thin Film Tin Selenide (SnSe), ACS Appl. Mater. Interfaces. 12 (2020) 28232–28238.
DOI: 10.1021/acsami.0c06026
Google Scholar
[8]
C.H. Suen, D. Shi, Y. Su, Z. Zhang, C.H. Chan, X. Tang, Y. Li, K.H. Lam, X. Chen, B.L. Huang, X.Y. Zhou, J.Y. Dai, Enhanced thermoelectric properties of SnSe thin films grown by pulsed laser glancing-angle deposition, J. Mater. 3 (2017) 293–298.
DOI: 10.1016/j.jmat.2017.05.001
Google Scholar
[9]
W. ting Wang, Z. hao Zheng, F. Li, C. Li, P. Fan, J. ting Luo, B. Li, Synthesis process and thermoelectric properties of n-type tin selenide thin films, J. Alloys Compd. 763 (2018) 960–965.
DOI: 10.1016/j.jallcom.2018.06.021
Google Scholar
[10]
D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang, H. Xie, Recent Progress of Two-Dimensional Thermoelectric Materials, 2020.
DOI: 10.1007/s40820-020-0374-x
Google Scholar
[11]
J.M. Lin, Y.C. Chen, C.F. Yang, W. Chen, Effect of Substrate Temperature on the Thermoelectric Properties of the Sb2Te3 Thin Films Deposition by Using Thermal Evaporation Method, J. Nanomater. 2015 (2015) 1–7.
DOI: 10.1155/2015/135130
Google Scholar
[12]
Z.G. Chen, X. Shi, L.D. Zhao, J. Zou, High-performance SnSe thermoelectric materials: Progress and future challenge, Prog. Mater. Sci. 97 (2018) 283–346.
DOI: 10.1016/j.pmatsci.2018.04.005
Google Scholar
[13]
K.A. Morgan, T. Tang, I. Zeimpekis, A. Ravagli, C. Craig, J. Yao, Z. Feng, D. Yarmolich, C. Barker, H. Assender, D.W. Hewak, High-throughput physical vapour deposition flexible thermoelectric generators, Sci. Rep. 9 (2019)1-9.
DOI: 10.1038/s41598-019-41000-y
Google Scholar
[14]
P. Fan, P. cheng Zhang, G. xing Liang, F. Li, Y. xing Chen, J. ting Luo, X. hua Zhang, S. Chen, Z. hao Zheng, High-performance bismuth telluride thermoelectric thin films fabricated by using the two-step single-source thermal evaporation, J. Alloys Compd. 819 (2020).
DOI: 10.1016/j.jallcom.2019.153027
Google Scholar
[15]
M.R. Burton, S. Mehraban, D. Beynon, J. McGettrick, T. Watson, N.P. Lavery, M.J. Carnie, 3D Printed SnSe Thermoelectric Generators with High Figure of Merit, Adv. Energy Mater. 9 (2019).
DOI: 10.1002/aenm.201900201
Google Scholar
[16]
C. Han, Z. Li, S. Dou, Recent progress in thermoelectric materials, Chinese Sci. Bull. 59 (2014) 2073–2091.
DOI: 10.1007/s11434-014-0237-2
Google Scholar
[17]
D. Beretta, N. Neophytou, J.M. Hodges, M.G. Kanatzidis, D. Narducci, M. Martin-Gonzalez, M. Beekman, B. Balke, G. Cerretti, W. Tremel, A. Zevalkink, A.I. Hofmann, C. Müller, B. Dörling, M. Campoy-Quiles, M. Caironi, Thermoelectrics: From history, a window to the future, Mater. Sci. Eng. R Reports. 138 (2019).
DOI: 10.1016/j.mser.2018.09.001
Google Scholar
[18]
A. Banik, K. Biswas, A Game-Changing Strategy in SnSe Thermoelectrics, Joule. 3 (2019) 636–638.
DOI: 10.1016/j.joule.2019.03.001
Google Scholar
[19]
M. Takashiri, J. Hamada, Bismuth antimony telluride thin films with unique crystal orientation by two-step method, J. Alloys Compd. 683 (2016) 276–281.
DOI: 10.1016/j.jallcom.2016.05.058
Google Scholar
[20]
S. Singh, J. Singh, J. Kaushal, S.K. Tripathi, Effects of annealing on the thermoelectric properties of nanocrystalline Bi 1.2 Sb 0.8 Te 3 thin films prepared by thermal evaporation, Appl. Phys. A Mater. Sci. Process. 125 (2019).
DOI: 10.1007/s00339-019-2420-4
Google Scholar
[21]
K. Kusagaya, M. Takashiri, Investigation of the effects of compressive and tensile strain on n-type bismuth telluride and p-type antimony telluride nanocrystalline thin films for use in flexible thermoelectric generators, J. Alloys Compd. 653 (2015) 480–485.
DOI: 10.1016/j.jallcom.2015.09.039
Google Scholar
[22]
R. Mori, T. Kurokawa, K. Yamauchi, S. Tanaka, M. Takashiri, Improved thermoelectric performances of nanocrystalline Sb2Te3/Cr bilayers by reducing thermal conductivity in the grain boundaries and heterostructure interface, Vacuum. 161 (2019) 92–97.
DOI: 10.1016/j.vacuum.2018.12.017
Google Scholar
[23]
M. Takashiri, S. Tanaka, H. Hagino, K. Miyazaki, International Journal of Heat and Mass Transfer Strain and grain size effects on thermal transport in highly-oriented nanocrystalline bismuth antimony telluride thin films, Int. J. Heat Mass Transf. 76 (2014) 376–384.
DOI: 10.1016/j.ijheatmasstransfer.2014.04.048
Google Scholar