[1]
K. Ishfaq, M. Asad, M.A. Mahmood, M. Abdullah, and C. Pruncu. Opportunities and challenges in additive manufacturing used in space sector: a comprehensive review. Rapid Prototyp. J., 28(10):2027–2042, 2022.
DOI: 10.1108/rpj-05-2022-0166
Google Scholar
[2]
Amir Malakizadi, Dinesh Mallipeddi, Sasan Dadbakhsh, Rachid M'Saoubi, and Peter Krajnik. Post-processing of additively manufactured metallic alloys – a review. International Journal of Machine Tools and Manufacture, 179:103908, aug 2022.
DOI: 10.1016/j.ijmachtools.2022.103908
Google Scholar
[3]
Kandice S.B. Ribeiro, Fábio E. Mariani, and Reginaldo T. Coelho. A study of different deposition strategies in direct energy deposition (DED) processes. Procedia Manufacturing, 48:663– 670, 2020.
DOI: 10.1016/j.promfg.2020.05.158
Google Scholar
[4]
Sadegh Rahmati and Ebrahim Vahabli. Evaluation of analytical modeling for improvement of surface roughness of FDM test part using measurement results. The International Journal of Advanced Manufacturing Technology, 79(5-8):823–829, feb 2015.
DOI: 10.1007/s00170-015-6879-7
Google Scholar
[5]
Amir Mostafaei, Amy M. Elliott, John E. Barnes, Fangzhou Li, Wenda Tan, Corson L. Cramer, Peeyush Nandwana, and Markus Chmielus. Binder jet 3d printing—process parameters, materials, properties, modeling, and challenges. Progress in Materials Science, 119:100707, jun 2021.
DOI: 10.1016/j.pmatsci.2020.100707
Google Scholar
[6]
L. Lebea, H. M. Ngwangwa, D. Desai, and F. Nemavhola. Experimental investigation into the effect of surface roughness and mechanical properties of 3d-printed titanium ti-64 ELI after heat treatment. International Journal of Mechanical and Materials Engineering, 16(1), nov 2021.
DOI: 10.20944/preprints202108.0477.v1
Google Scholar
[7]
C. Dordlofva, S. Brodin, and C. Andersson. Using demonstrator hardware to develop a future qualification logic for additive manufacturing parts. Proceedings of the International AstronauticalCongress, IAC, 7:25, 2019.
Google Scholar
[8]
A.B. Spierings, T.L. Starr, and K. Wegener. Fatigue performance of additive manufactured metallic parts. Rapid Prototyping Journal, 19(2):88–94, mar 2013.
DOI: 10.1108/13552541311302932
Google Scholar
[9]
Tejas Gundgire, Tuomas Jokiaho, Suvi Santa-aho, Timo Rautio, Antti Järvenpää, and Minnamari Vippola. Comparative study of additively manufactured and reference 316 l stainless steel samples – effect of severe shot peening on microstructure and residual stresses. Materials Characterization, 191:112162, sep 2022.
DOI: 10.1016/j.matchar.2022.112162
Google Scholar
[10]
Timo Rautio, Matias Jaskari, Tejas Gundgire, Terho Iso-Junno, Minnamari Vippola, and Antti Järvenpää. The effect of severe shot peening on fatigue life of laser powder bed fusion manufactured 316l stainless steel. Materials, 15(10):3517, may 2022.
DOI: 10.3390/ma15103517
Google Scholar
[11]
J.C. Outeiro. Residual stresses in machining. In Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques, pages 297–360. Elsevier, 2020.
DOI: 10.1016/b978-0-12-818232-1.00011-4
Google Scholar
[12]
Usman Ali, Haniyeh Fayazfar, Farid Ahmed, and Ehsan Toyserkani. Internal surface roughness enhancement of parts made by laser powder-bed fusion additive manufacturing. Vacuum, 177:109314, jul 2020.
DOI: 10.1016/j.vacuum.2020.109314
Google Scholar
[13]
Pawan Tyagi, Tobias Goulet, Christopher Riso, Robert Stephenson, Nitt Chuenprateep, Justin Schlitzer, Cordell Benton, and Francisco Garcia-Moreno. Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing. Additive Manufacturing, 25:32–38, jan 2019.
DOI: 10.1016/j.addma.2018.11.001
Google Scholar
[14]
Hiroshige Masuo, Yuzo Tanaka, Shotaro Morokoshi, Hajime Yagura, Tetsuya Uchida, Yasuhiro Yamamoto, and Yukitaka Murakami. Effects of defects, surface roughness and HIP on fatigue strength of ti-6al-4v manufactured by additive manufacturing. Procedia Structural Integrity, 7:19–26, 2017.
DOI: 10.1016/j.prostr.2017.11.055
Google Scholar
[15]
L. Denti, E. Bassoli, A. Gatto, E. Santecchia, and P. Mengucci. Fatigue life and microstructure of additive manufactured ti6al4v after different finishing processes. Materials Science and Engineering: A, 755:1–9, may 2019.
DOI: 10.1016/j.msea.2019.03.119
Google Scholar
[16]
Qu, Li, Fucai Zhang, and JiamingBai. Anisotropic cellular structure and texture microstructure of 316l stainless steel fabricated by selective laser melting via rotation scanning strategy. Materials & Design, page 110454, feb 2022.
DOI: 10.1016/j.matdes.2022.110454
Google Scholar
[17]
H. Gray, L. Wagner, and G. Lutjering. Influence of residual stresses on fatigue crack propagation of small surface cracks. DGM, 1987.
Google Scholar
[18]
Timo Rautio, Aappo Mustakangas, Jani Kumpula, and Antti Järvenpää. Scanning strategy effect on the edge porosity and fatigue life of 316l PBF-LB parts. Procedia CIRP, 111:130–133, 2022.
DOI: 10.1016/j.procir.2022.08.106
Google Scholar