Improvement of Safety and Reliability of SCM440 Steel with Induction Hardening

Article Preview

Abstract:

In this study, structural SCM440 steel was used to investigate harmless crack size using compressive residual stresses by induction hardening (IH). The fatigue limits of base metal (BM), quenching–tempering (QT), and IH specimens were obtained. The harmless crack size (ahml) was evaluated using the fatigue limits, threshold stress intensity factor using the Ando equation, and the sum of the stress intensity factor using the Newman-Raju and API-RP579 equations. Because as the crack depth increases, the compressive residual stress rapidly decreases, the harmless crack was determined from the intersection of depth for all aspect ratios (As). However, the outermost surface crack did not intersect because the compressive residual stress (σr,s) on the surface is always present. The ahml values based on BM and QT are 1.04−1.45 and 1.02−1.39 mm, respectively. These values can be evaluated as the ∆Kth(l) of a long crack. ahml did not significantly depend on As. If the crack detected after nondestructive inspection (NDI) is not surface modified after repair, then NDI1 with a very high resolution must be performed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-42

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Savaria, F. Bridier, P. Bocher, Predicting the effects of material properties gradient and residual stresses on the bending fatigue strength of induction hardened aeronautical gears, International Journal of Fatigue, 85 (2016) 70–84.

DOI: 10.1016/j.ijfatigue.2015.12.004

Google Scholar

[2] L. Martin, G. Florian, T. Zafer, C. Wei, Fatigue and fracture behavior of induction-hardened and superimposed mechanically post-treated steel surface layers, Journal of Materials Engineering and Performance, 29 (2018) 4881–4892.

DOI: 10.1007/s11665-018-3543-z

Google Scholar

[3] J. W. Gao, X. N. Pan, J. Han, S. P. Zhu, D. Liao, Y. B. Li, G. Z. Dai, Influence of artificial defects on fatigue strength of induction hardened S38C axles, International Journal of Fatigue, 139 (2020) 105746.

DOI: 10.1016/j.ijfatigue.2020.105746

Google Scholar

[4] L. Bertini, V. Fontanari, Fatigue behaviour of induction hardened notched components, International Journal of Fatigue, 21 (1999) 611–617.

DOI: 10.1016/s0142-1123(99)00019-5

Google Scholar

[5] S. H. Song, B. H. Choi, Fatigue characteristics and fatigue limit prediction of an induction case hardened Cr–Mo steel alloy, Materials Science and Engineering A, 361 (2003) 15–22.

DOI: 10.1016/s0921-5093(03)00246-6

Google Scholar

[6] K. Ando, K. W. Nam, M. H. Kim, T. Ishii, K. Takahashi, Analysis of peculiar fatigue fracture behavior of shot peened steels focusing on threshold stress intensity factor range, Transaction of Japan Society of Spring Engineers, 65 (2020) 35–41.

DOI: 10.5346/trbane.2020.35

Google Scholar

[7] K. Ando, M. H. Kim, K. W. Nam, Analysis on peculiar fatigue fracture behaviour of shot peened metal using new threshold stress intensity factor range equation, Fatigue & Fracture of Engineering Materials & Structures, 44 (2021) 306–316.

DOI: 10.1111/ffe.13356

Google Scholar

[8] M. H. EI Haddad, K. N. Smith, T. H. Topper, Fatigue crack propagation of shot cracks, Journal of Engineering Materials and Technology, 101 (1979) 42–46.

DOI: 10.1115/1.3443647

Google Scholar

[9] A. Tange, T. Akutu, N. Takamura, Relation between shot peening residual stress distribution and fatigue crack propagation life in spring steel, Transaction of Japan Society of Spring Engineers, 1991 (1991) 47–53.

DOI: 10.5346/trbane.1991.47

Google Scholar

[10] K. Ando, R. Fueki, K. W. Nam, K. Matsui, K. Takahashi, A study on the unification of the threshold stress intensity factor for micro crack growth, Transaction of Japan Society of Spring Engineers, 64 (2019) 39–44.

DOI: 10.5346/trbane.2019.39

Google Scholar

[11] M. Nakagawa, K. Takahashi, T. Osada, H. Okada, H. Koike, Improvement in fatigue limit by shot peening for high-strength steel containing crack-like surface defect (influence of surface crack aspect ratio), Transaction of Japan Society of Spring Engineers, 59 (2014) 13–18.

DOI: 10.1115/pvp2013-97839

Google Scholar

[12] K. Takahashi, T. Amano, K. Hananori, K. Ando, F. Takahashi, Improvement of fatigue limit by shot peening for high strength steel specimens containing a crack-like surface defect, International Journal of Structural Integrity, 2 (2011) 281–292.

DOI: 10.1108/17579861111162888

Google Scholar

[13] K. Takahashi, H. Okada, K. Ando, Effects of shot peening on the torsional fatigue limit of high-strength steel containing an artificial surface defect, International Journal of Structural Integrity, 3 (2012) 274-284.

DOI: 10.1108/17579861211264389

Google Scholar

[14] K. Houjou, K. Takahashi, K. Ando, Improvement of fatigue limit by shot peening for high-tensile strength steel containing a crack in the stress concentration zone, International Journal of Structural Integrity, 4 (2013) 258–266.

DOI: 10.1108/17579861311321726

Google Scholar

[15] J. Yasuda, K. Takahashi, H. Okada, Improvement of fatigue limit by shot peening for high-strength steel containing a crack like surface defect-influence of stress ratio, International Journal of Structural Integrity, 5 (2014) 45–59.

DOI: 10.1108/ijsi-07-2013-0012

Google Scholar

[16] K. Takahashi, H. Osedo, T. Suzuki, S. Fukuda, Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening, Engineering Fracture Mechanics, 193 (2018) 151–161.

DOI: 10.1016/j.engfracmech.2018.02.013

Google Scholar

[17] J. C. Newman Jr., I. S. Raju, An empirical stress-intensity factor equation for the surface crack, Engineering Fracture Mechanics, 15 (1981) 185–192.

DOI: 10.1016/0013-7944(81)90116-8

Google Scholar

[18] API Recommended Practice 579, Fitness for Service, American Petroleum Institute, Washington, D.C., USA, (2000)

Google Scholar

[19] K. Ando, K. W. Nam, M. H. Kim, K. Takahashi, Improvement of reliability of fatigue properties of high strength steel applying surface crack non-damaging technology, High Pressure Institute of Japan, 58 (2020) 263–271.

Google Scholar

[20] K. W. Nam, K. Ando, M. H. Kim, K. Takahashi, Improving reliability of high strength material designed against fatigue limit using surface crack nondamaging technology, Fatigue & Fracture of Engineering Materials & Structures, 44 (2021) 1602–1610.

DOI: 10.1111/ffe.13460

Google Scholar

[21] M. H. Kim, W. G. Lee, C.S. Kim, K. Takahashi, M. Handa, K. W. Nam, Evaluation of fatigue limit and harmless crack size of needle peened offshore structure steel F690, Journal of Mechanical Science and Technology, 35 (2021) 3855–3862.

DOI: 10.1007/s12206-021-2109-4

Google Scholar

[22] K. W. Nam, M. H. Kim, K. H. Gu, C. Y. Park, Rendered harmless of surface crack with different crack aspect ratio in ultrasonic peened STS316L steel, Transactions of the Korean Society of Mechanical Engineers A, 45 (2021) 629–635.

DOI: 10.3795/ksme-a.2021.45.8.629

Google Scholar

[23] C. Y. Park, K. H. Gu, K. W. Nam, Reliability Improvement for Fatigue Characteristics of STS316L Steel using Surface Crack Non-damaging Technology, Transactions of the Korean Society of Mechanical Engineers A, 45 (2021) 741–749.

DOI: 10.3795/ksme-a.2021.45.9.741

Google Scholar

[24] K. Ando, M. H. Kim, K. W. Nam, Analysis on peculiar fatigue fracture behaviour of shot peened metal using new threshold stress intensity factor range equation, Fatigue & Fracture of Engineering Materials & Structures, 44 (2021) 306–316.

DOI: 10.1111/ffe.13356

Google Scholar

[25] K. H. Gu, G. H. Lee, C. S. Oh, K. W. Nam, Harmless crack characteristics by shot peening of steels with different carbon contents, MRS Advances, 7 (2022) 811–-817.

DOI: 10.1557/s43580-022-00326-y

Google Scholar

[26] K. H. Gu, K. Ando, K. W. Nam, Analytical study on rationalize and reliability improvement of maintenance against stress corrosion cracking in stainless steel welds of LWR primary system, Journal of Mechanical Science and Technology, 37 (2023) 1773–1780.

DOI: 10.1007/s12206-023-0317-9

Google Scholar

[27] D. Dobberke, J. Wiebesiek, J. Fröschl, M. Leitner, Fatigue test results of surface hardened components to evaluate a two layer approach for strength assessment, Procedia Engineering, 213 (2018) 262–269.

DOI: 10.1016/j.proeng.2018.02.027

Google Scholar

[28] H. Zhang, S. Wu, N. Ao, J. Zhang, H. Li, L. Zhou, P. Xu, Y. Su, Fatigue crack non-propagation behavior of a gradient steel structure from induction hardened railway axles, International Journal of Fatigue 166 (2023) article 107296.

DOI: 10.1016/j.ijfatigue.2022.107296

Google Scholar

[29] ASTM E92, Standard test method for Vickers hardness of metallic materials, 2017 edition (2017).

Google Scholar

[30] ASTM E837-20, Standard test method for determining residual stresses by the hole-drilling strain-gage method, (2021).

DOI: 10.1520/e0837-13

Google Scholar

[31] H. Koyama, R. Kitamura, A. Tange, Fatigue crack propagation of spring steels, Japan Society of Spring Engineers, 29 (1984) 30–37.

DOI: 10.5346/trbane.1984.30

Google Scholar

[32] Y. Kitsunai, Effect of microstructure on fatigue crack growth behavior of carbon steels, The Society of Materials Science of Japan, 29 (1980) 1018–1023.

Google Scholar

[33] Y. Kitsunai, Effect of microstructure on fatigue crack growth mechanisms in high strength steel (Relationship between crack growth rate and prior austenite grain size), The Society of Materials Science of Japan, 29 (1980) 795–800.

Google Scholar

[34] K. Takahashi, Y. Kogishi, N. Shibuya, F. Kumeno, Effects of laser peening on the fatigue strength and defect tolerance of aluminum alloy, Fatigue & Fracture of Engineering Materials & Structures, 43 (2020) 845-856.

DOI: 10.1111/ffe.13201

Google Scholar

[35] K. Ando, K. W. Nam, M. H. Kim, K. Takahashi, Improvement of safety and reliability against stress corrosion cracking of stainless steel welds by application of surface crack harmless technology, High Pressure Institute of Japan, 60 (2022) 132–141.

Google Scholar