[1]
Morales Conde M.J.; Rodriguez Liñan C.; Rubio de Hita P. 2014. Use of ultrasound as a non destructive evaluation technique for sustainable interventions on wooden structures. Building and Environment. 82: 247-257.
DOI: 10.1016/j.buildenv.2014.07.022
Google Scholar
[2]
Wolters, M.; Hüls, T.; Solbrig, K.; Frühwald, K. 2015. Non destructive evaluation of coconut palm wood by means of ultrasonic and natural frequency methods. In: Proceedings: 19th International Nondestructive Testing and Evaluation of Wood Symposium, Rio de Janeiro, Brazil, United States Department of Agriculture General Technical Report FPL-GTR-239: 618-625.
Google Scholar
[3]
F.C. Beall, Overview of the use of ultrasonic technologies in research on wood properties, Wood Sci. Technol. 36 (2002) 197–212.
DOI: 10.1007/s00226-002-0138-4
Google Scholar
[4]
Perlin, L.P., do Valle, Â. and de Andrade Pinto, R.C., 2018. New method to locate the pith position in a wood cross-section based on ultrasonic measurements. Construction and Building Materials, 169, pp.733-739.
DOI: 10.1016/j.conbuildmat.2018.03.021
Google Scholar
[5]
Vázquez, C. et al. Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and comparison with static compression and bending methods. Wood Sci. Technol. 49, 607–622 (2015).
DOI: 10.1007/s00226-015-0719-7
Google Scholar
[6]
Bachtiar E V., Sanabria SJ, Mittig JP, Niemz P (2017) Moisture-dependent elastic characteristics of walnut and cherry wood by means of mechanical and ultrasonic test incorporating three different ultrasound data evaluation techniques. Wood Sci Technol 51:47–67. https://doi.org/10.1007/s00226- 016-0851-z
DOI: 10.1007/s00226-016-0851-z
Google Scholar
[7]
Bucur V, Archer RR. Elastic constants for wood by an ultrasonic method. Wood Sci Technol 1984; 18:255–65.
DOI: 10.1007/BF00353361
Google Scholar
[8]
Longo, R. et al. Wood elastic characterization from a single sample by resonant ultrasound spectroscopy. Ultrasonics 52, 971–974 (2012).
DOI: 10.1016/j.ultras.2012.08.006
Google Scholar
[9]
Keunecke, D., Sonderegger, W., Pereteanu, K., Lüthi, T. & Niemz, P. Determination of Young's and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci. Technol. 41, 309–327 (2007).
DOI: 10.1007/s00226-006-0107-4
Google Scholar
[10]
F. Tallavo, G. Cascante, M.D. Pandey, A novel methodology for condition assessment of wood poles using ultrasonic testing, NDT E Int. 52 (2012) 149– 156.
DOI: 10.1016/j.ndteint.2012.08.002
Google Scholar
[11]
R.E. Green Jr., Non-contact ultrasonic techniques, Ultrasonics 42 (2003) 9–16.
DOI: 10.1016/j.ultras.2004.01.101
Google Scholar
[12]
Bartholomeu, A., Gonçalves, R., Bucur, V. 2003. Dispersion of ultrasonic waves in Eucalyptus lumber as a function of the geometry of boards. Sci. For. Sci. 63:235–240.
Google Scholar
[13]
Bucur, V., Böhnke, I. 1994. Factors affecting ultrasonic measurements in solid wood. Ultrasonics. 32:385–390
DOI: 10.1016/0041-624x(94)90109-0
Google Scholar
[14]
Franco, E. E., Meza, J. M., & Buiochi, F. (2011). Measurement of elastic properties of materials by the ultrasonic through-transmission technique. DYNA (Colombia), 78(168).
Google Scholar
[15]
Tafkirte, M., & Hamine, A. (2020). A transfer matrix model and application spectral and time-frequency to study an ultrasonic waves backscattered by different plates immersed in water. In Materials Today: Proceedings (Vol. 36, p.61–66). Elsevier Ltd.
DOI: 10.1016/j.matpr.2020.05.206
Google Scholar
[16]
Mountassir, L., Bassidi, T., & Nounah, H. (2019). Experimental study of the corrosion effect on the elastic properties of steel plates by ultrasonic method. Physica B: Condensed Matter, 557, 34–44.
DOI: 10.1016/j.physb.2019.01.008
Google Scholar
[17]
Siryabe, E., Renier, M., Meziane, A., Castaings, M.: The transmission of lamb waves across adhesively bonded lap joints to evaluate interfacial adhesive properties. Phys. Procedia. 70, 541–544 (2015).
DOI: 10.1016/j.phpro.2015.08.012
Google Scholar