[1]
Information on http://www.IUCN.com, consulted on the 20th of November 2017.
Google Scholar
[2]
G.R. Schatz, Flore générique des arbres de Madagascar, Royal Botanic Gardens, Kew & Missouri Botanical Garden, London, 2001.
Google Scholar
[3]
P. Commerson, Manuscrit MS 887 II / Y.L. 45. Bibliothèque du Muséum National d'Histoire Naturelle, Paris, 1770.
Google Scholar
[4]
H. Perrier de la Bâthie, Musaceae, 46 ème famille. In H. Humbert (ed.), Flore de Madagascar et des Comores, Imprimerie officielle, Tananarive, 1946.
Google Scholar
[5]
R.M.T. Dahlgren, H.T. Clifford, P.F. Yeo., The families of the Monocotyledons, Structure, evolution and taxonomy, Springer, Berlin, 1985.
DOI: 10.1007/978-3-642-61663-1
Google Scholar
[6]
C.M. Hladik, P. Blanc, A. Hladik, L'arbre du voyageur : Des usages et de la diffusion horticole du ravenala Rev. Ecol-Terre Vie (2002) 201-223.
DOI: 10.3406/revec.1999.2292
Google Scholar
[7]
R.A. Megraw, Douglas-fir wood properties. In Proceedings, Douglas-fir: Stand Management for the Future, C.D.O Oliver, D.P. Hanley, and J.A. Johnson. Institute of Forest Resources, University of Washington, Seattle, Wash. 55 (1986) 81–96.
Google Scholar
[8]
E.Y. Haartveit, P.O. Flæte, Rapid prediction of basic wood properties by near infrared spectroscopy, N. Z. J. For. Sci 36 (2006) 393-407.
Google Scholar
[9]
S. Tsuchikawa, K. Inoue, J. Noma, K. Hayashi, Application of near-infrared spectroscopy to wood discrimination. J. Wood Sci. 49 (2003) 0029-0035.
DOI: 10.1007/s100860300005
Google Scholar
[10]
S. Tsuchikawa, M. Schwanninger, A review of recent near-infrared research for wood and paper (Part 2), Appl. Spectrosc. Rev., 48 (2013) 560-587.
DOI: 10.1080/05704928.2011.621079
Google Scholar
[11]
S. Tsuchikawa, H. Kobori, A review of recent application of near infrared spectroscopy to wood science and technology. J Wood Sci. 61 (2015) 213-220.
DOI: 10.1007/s10086-015-1467-x
Google Scholar
[12]
F.A. Snel, J.W. Braga, D. da Silva, A.C. Wiedenhoeft, A. Costa, R. Soares, T.C. Pastore, Potential field-deployable NIRS identification of seven Dalbergia species listed by CITES. J Wood Sci. 52 (2018) 1411-1427.
DOI: 10.1007/s00226-018-1027-9
Google Scholar
[13]
B. Guyot, F. Davrieux, J.C. Manez, J.C. Vincent, Détermination de la caféine et de la matière sèche par spectrométrie proche infrarouge. Applications aux cafés verts Robusta et aux cafés torréfiés. Café, Cacao, Thé, 37 (1993) 53-64.
DOI: 10.4000/books.pufc.42940
Google Scholar
[14]
V. Avit, S. Vrignon, A. Flori, G. Chaix, V. Sarazin, M. Tella, J. Ollivier, Impact de l'appareil de mesure utilisé et de la préparation des échantillons sur des modèles de diagnostic foliaire du palmier à huile par spectrométrie proche infrarouge. Association HélioSPIR (2023).
DOI: 10.4000/books.pufc.42940
Google Scholar
[15]
G. Chaix, H. Andrianoelisoa, C. Menut, P. Danthu, Identification des chémotypes de Ravensara aromatica par spectrométrie proche infrarouge, In : APPAM. 29èmes Journées internationales huiles essentielles et extraits, Digne les Bains, France, 24-25 juin 2010. s.l. : s.n., 11 p.. Journées internationales huiles essentielles et extraits. 29, 2010-06-24/2010-06-25, Digne les Bains, France, (2010).
DOI: 10.1007/s10298-012-0703-4
Google Scholar
[16]
I. Cissé, Caractérisation des propriétés biochimiques et nutritionnelles de la pulpe de baobab des espèces endémiques de Madagascar et d'Afrique continentale en vue de leur valorisation, Montpellier : Montpellier SupAgro, 153 p (2012).
DOI: 10.17660/th2020/75.3.1
Google Scholar
[17]
H. Yan, H.W. Siesler, Hand-held near-infrared spectrometers: State-of-the-art instrumentation and practical applications. NIR News 29 (2018) 8–12.
DOI: 10.1177/0960336018796391
Google Scholar
[18]
G.B. Williamson, M.C. Wiemann, Measuring wood specific gravity correctly, Am J Bot 97 (2010) 519–52.
Google Scholar
[19]
L.C. Viana, P.F. Trugilho, G. Hein, P.R. Lima, J.T. Moreira da Silva, Predicting the morphological characteristics and basic density of eucalyptus wood using the nirs technique, Cerne 15 (2009).
Google Scholar
[20]
P. Williams, Near-infrared Technology-Getting the Best Out of Light, PDK Grain, Canada (2003).
Google Scholar
[21]
R. Cai, S.S. Wang, Y. Meng, Q.G Meng, W.J Zhao, Rapid quantification of flavonoids in propolis and previous study for classification of propolis from different origins by using near infrared spectroscopy, Anal. Methods, 4 (2012) 2388–2395
DOI: 10.1039/c2ay25184a
Google Scholar
[22]
L.R. Schimleck, J.C. Doran, A. Rimbawanto, Near infrared spectroscopy for cost-effective screening of foliar oil characteristics in a Melaleuca cajuputi breeding population, J Agric Food Chem, 51 (2003) 2433-2437.
DOI: 10.1021/jf020981u
Google Scholar
[23]
A.J.A Santos, A.A.A Alves, R.M.S Simoes, H. Pereira, J. Rodrigues, M. Schwanninger, Estimation of wood basic density of Acacia melanoxylon by near infrared spectroscopy, J Near Infrared Spectrosc, 20 (2012) 267-274.
DOI: 10.1255/jnirs.986
Google Scholar
[24]
K. M Diesel, F. S. da Costa, A. S.Pimenta, K.M Lima, Near-infrared spectroscopy and wavelength selection for estimating basic density in Mimosa tenuiflora [Willd.] Poiret wood, Wood Sci. Technol., 48 (2014) 949-959.
DOI: 10.1007/s00226-014-0652-1
Google Scholar
[25]
J.P Gauchi, P. Chagnon, Comparison of selection methods of explanatory variables in PLS regression with application to manufacturing process data, Chemom. Intell. Lab. Syst., 58 (2001)171-193.
DOI: 10.1016/s0169-7439(01)00158-7
Google Scholar
[26]
R. Sabatier, C. Reynes, M. Vivien, Grain 7 : Régression Linéaire, in Chemoocs, Session 1 (2016).
Google Scholar
[27]
J.M. Roger, M. Ecarnot, Les prétraitements, in Chemoocs, Session 1 (2016).
Google Scholar
[28]
M.A. Acuna, G.O Murphy, Use of near infrared spectroscopy and multivariate analysis to predict wood density of Douglas fir, Bosque, 28 (2007) 187-197.
Google Scholar
[29]
O.E Adedipe, B. Dawson-Andoh, Prediction of yellow-popular (Liriodendron tulipifiera) veneer stiffness and bulk density using near infrared spectroscopy and multivariate calibration, J Near Infrared Spectrosc, 16 (2008) 487-496.
DOI: 10.1255/jnirs.812
Google Scholar
[30]
A. Alves, A. Santos, P. Rozenberg, L.E. Pâques, J.P. Charpentier, M. Schwanninger, J. Rodrigues, A common near infrared—based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix 3 eurolepis, Wood Sci Technol, 46 (2012) 157–175.
DOI: 10.1007/s00226-010-0383-x
Google Scholar
[31]
C.S.D. Nascimento, C.C.D Nascimento, R. D. D. Araújo, J. C. R. Soares, N. Higuchi, Characterization of technological properties of matá-matá wood (Eschweilera coriacea [DC.] SA Mori, E. odora Poepp.[Miers] and E. truncata [AC.] by Near Infrared Spectroscopy. iForest 14(5) (2021) 400-407
DOI: 10.3832/ifor3748-014
Google Scholar
[32]
R. Wang, L. Shi, Y. Wang, Physical and mechanical properties of Catalpa bungei clones and estimation of the properties by near-infrared spectroscopy, J Renew Mater, 10(12), 3285 (2022).
DOI: 10.32604/jrm.2022.020546
Google Scholar
[33]
U. Saha, D. Endale, P.G. Tillman, W.C. Johnson, J. Gaskin, L. Sonon, Y. Yang, Analysis of various quality attributes of sunflower and soybean plants by near infrared reflectance spectroscopy: Development and validation calibration models, Am. J. Anal. Chem., 8(7), (2017) 462-492.
DOI: 10.4236/ajac.2017.87035
Google Scholar
[34]
M.K.D Rambo, A. R. Alves, W.T. Garcia, M.M.C. Ferreira, Multivariate analysis of coconut residues by near infrared spectroscopy. Talanta, 138 (2015) 263-272.
DOI: 10.1016/j.talanta.2015.03.014
Google Scholar
[35]
H. Chung, S.Y. Choi, J. Choo, Y. Lee, Investigation of Partial Least Squares (PLS) Calibration Performance based on Different Resolutions of Near Infrared Spectra, Bull Korean Chem Soc, 25(5), (2004) 647-651
DOI: 10.5012/bkcs.2004.25.5.647
Google Scholar
[36]
L.R. Schimleck, Stürzenbecher, P. David Jones, R. Evans, Development of wood property calibrations using near infrared spectra having different spectral resolutions, J Near Infrared Spectrosc, 12(1), (2004) 55–61
DOI: 10.1255/jnirs.407
Google Scholar
[37]
W. Killmann, W.C. Wong, Some properties and uses of oil palm and coconut palm stems, Institute Penyelidikan Perhutanan Malaysia. Forest Research Institute Malaysia. Report. no. 53, FRIM, Kepong (1988).
DOI: 10.24191/mjcet.v5i2.19773
Google Scholar
[38]
L. Fathi, A. Frühwald, The role of vascular bundles on the mechanical properties of cocnut palm wood, Wood Mater. Sci. Eng., 9(14) (2014) 214-223.
DOI: 10.1080/17480272.2014.887774
Google Scholar
[39]
S. Khozirah, K.C. Khoo, A.R.M. Ali, Oil palm stem utilization: review of research, Forest Research Institute Malaysia, (1991).
Google Scholar
[40]
A. Frühwald, R. Peek, M. Schulte, Utilisation of Coconut Timber from North Sulawesi, Indonesia, GTZ, Hamburg, (1992).
Google Scholar
[41]
S.H. Erwinsyah, Improvement of oil palm wood properties using bioresin, Phd thesis, Technical university Dresden (2008).
Google Scholar
[42]
W. Killmann, S. Lim, Anatomy and properties of oil palm stem. Proceedings of the National Symposium on Oil Palm By-products in Agro-based Industries, 1985.
Google Scholar
[43]
S.C. Lim, K. Khoo, Characteristics of oil palm trunk and its potential utilization, The Malaysian For., 49(1), (1986) 3-22.
Google Scholar