[1]
Nore K. Nyrud A. Kraniotis D. Skulberg K. Englund F. Aurlien T Moisture buffering. Energy potential and volatile organic compound emissions of wood exposed to indoor environments. Sci Technol Build Environ 23(3):512–52. (2017)
DOI: 10.1080/23744731.2017.1288503
Google Scholar
[2]
Zanetti. EA. Green building: potential of wood use in my home my life program in Brazil and itsCarbon Implications. FAO ECCMOFS/2015. Rome. Italy Available at http://www.fao.org/ forestry/42991-09c4be9476af0d3420a74cb54638e40f8.pdf on 7 Apr 2016.
Google Scholar
[3]
R. Kellwertii « Qualitativen zuwaghanalyse Holz ».Roh u.Werkstoff. Vol12. n°3. pp.77-83. 1954.
Google Scholar
[4]
AFNOR. 1985a. NF B51-005: Wood. Determination of the density.
Google Scholar
[5]
Jannot Y. and Meukam P.. « Simplified estimation method for determining the thermal effusivity and the thermal conductivity using a low cost hot strip » Meas. Sci. Technol. 15. pp.1932-1938. (2004)
DOI: 10.1088/0957-0233/15/9/034
Google Scholar
[6]
Djossou A. Armand "Study of variations in thermophysical properties and durability, depending on the humidity of eco-building materials in Benin", Thesis, University of Abomey Calavi, (2014)
Google Scholar
[7]
E.T. Engelund. M. Klamer. and T.M. Venås. "Acquisition of sorption isotherms for modified woods by the use of dynamic vapour sorption instrumentation: Principles and Practice." IRG/WP 10- 40518. 41st Annual Meeting. Biarritz. France. 9-13 May 2010..
Google Scholar
[8]
Z. Jalaludin. C. Hill. and A. Kermani. " Moisture adsorption isotherms of wood using dynamic vapor sorption." CTE. SEBE. Napier University. Edinburgh. UK. 2010.
Google Scholar
[9]
Hailwood. A.J.; Horrobin. S. " Absorption of water by polymers: analysis in terms of a simple model ". Trans. Faraday Soc 42:84-92. 1946.
DOI: 10.1039/tf946420b084
Google Scholar
[10]
Ouafia. N.; Moghrani. H.; Benaouada. N.; Yassaa. N.; Maachi. R.; Younsi. R. Moisture sorption isotherms and heat of sorption of Algerian bay leaves (Laurus nobilis). Maderas. Ciencia y tecnología 17(4):759-772. 2015.
DOI: 10.4067/s0718-221x2015005000066
Google Scholar
[11]
Alix. S.; Philippe. E.; Bessadok. A.; Lebrun. L.; Morvan. C.; Marais. S. Effect of chemical treatments on water sorption and mechanical properties of flax fibres. Bioresource Technology 100:4742-4749. 2009.
DOI: 10.1016/j.biortech.2009.04.067
Google Scholar
[12]
Boulet. M. Monograph of Gmelina arborea. Review wood and forest of the tropics, 1977.
Google Scholar
[13]
Gerard J.. Edi Kouassi A. Daigremont C. Detienne P. Fouquet D. & Vernay M. 1998. Synthesis on the technological reference characteristics of the main commercial woods Africans, Montpellier,.
Google Scholar
[14]
T. A. Amadji. "The timber industry in Benin: Study of the adequacy between technological properties and uses of local timber species." University of Abomey calavi. pp.100-130. 2017.
Google Scholar
[15]
Doucet R.. 2018. Study of the physical, technological and natural durability properties of wood from Pachyelaina Tessesanii (Harms) and Pmacrophylla Beath University of Liege.
Google Scholar
[16]
Spear M. & Walker J.. 2006. Dimensional instability in timber. In: J.C.F. Walker ed. Primary Wood Processing: Principles and Pratice. Doordrecht. 95–120.
DOI: 10.1007/1-4020-4393-7_4
Google Scholar
[17]
Jodin P.. Wood engineered material. Publisher : Association for Research on wood in Lorraine. (ARBOLOR) ISBN. 2-907086-O7-32. p.285. 1994.
Google Scholar
[18]
W. E. Morton and J. W. S. Hearle. Physical properties of textile fibres. 1975.
Google Scholar
[19]
Mouchot N. (2002)."Experimental study and modeling diffusional water transport in hygroscopic domain of beech and spruce wood". Thesis: Industrial sciences and technologie. Henry Poincare University; Nancy 1: 140 p.
Google Scholar
[20]
Houngan C.A. Hygrothermal characterization of local building materials in Benin: Mass diffusivity and sorption isotherm, thermal conductivity and diffusivity".Thesis. AGROPARISTECH-Nancy France. 2008.
Google Scholar
[21]
Kouchadé. C.. 2004." Routine determination of mass diffusivity in wood by inverse method from electrical measurement in transient regime " . Wood, National School of Rural Water and Forest Engineering Nancy 139p
Google Scholar
[22]
Fernández. F.G.; Esteban. L.G.; De Palacios. P.; Cristina S.; Iruela A.G.; De la Fuente. J. 2014. Sorption and thermodynamic properties of Terminalia superb Engl. & Diels and Triplochiton scleroxylon K. Schum. Through the 15. 35 and 50°C sorption isotherms. Eur. J. Wood Prod (72):99-106.
DOI: 10.1007/s00107-013-0752-x
Google Scholar