Influence of Hydrogen on the Failure Mechanism of Standard Duplex Stainless Steel X2CrNiMoN22-5-3 Exposed to Corrosion Fatigue

Article Preview

Abstract:

IIn a geothermal environment, cathodic protection is employed to improve resistance against corrosion fatigue. However, during the cathodic reactions under applied potential, hydrogen is generated and assimilated, leading to a reduced lifetime expectancy of high-alloyed steels. The corrosion fatigue mechanism of a standard duplex stainless steel X2CrNiMoN22-5-3 (1.4462) specimen loaded with hydrogen was studied in a corrosion chamber specifically designed for the purpose, surrounded by the electrolyte of the Northern German Basin at 369 K. The microstructural reactions resulting in hydrogen incorporation significantly decrease the number of cycles to failure of the specimen. This reduction is attributed to hydrogen enhancing crack propagation and causing early failure, primarily due to the deterioration of the mechanical properties of the ferritic phase rather than corrosion reactions or corrosive degradation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-32

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Vollmar, E. Roeder: Werkstoffe und Korrosion Vol. 45 (1994), p.444–451

Google Scholar

[2] Y.B. Unigovski, G. Lothongkum, E.M. Gutman, D. Alush, R. Cohen R: Corros. Sci. Vol. 51 (2009), p.3014–3020

DOI: 10.1016/j.corsci.2009.08.035

Google Scholar

[3] C.M. Holtam, D.P. Baxter, I.A. Ashcroft, R.C. Thomson: Int. J. Fatigue Vol. 32 (2010) p.288–296

Google Scholar

[4] I. Thorbjörnsson: Mater. Des. Vol. 16 (1995), p.97–102

Google Scholar

[5] J.P. Thomas, R.P Wei: Mater. Sci. Eng. A Vol. 159 (1992) p.205–221

Google Scholar

[6] R. Ebara: Eng. Fail. Anal. Vol. 13 , (2006), p.516–525

Google Scholar

[7] I. Alvarez-Armas: Mech. Eng. Vol. 1 (2008) 51–57

Google Scholar

[8] T. Prosek et al.: Corrosion Vol. 70 (2014), p.1052–1063

Google Scholar

[9] S. Schultze, J. Göllner, K. Eick, P. Veit, H. Heyse: Mater. Corros. Vol. 52 (2001) p.26–36

Google Scholar

[10] N. Arnold, P. Gümpel, T.W. Heitz: Mater. Corros. Vol. 49 (1999) p.140–145

Google Scholar

[11] M. Wolf et al.: Energy Procedia Vol. 114 (2017), p.5337 – 5345

Google Scholar

[12] A. Pfennig, A. Gröber, R. Simkin, A. Kranzmann: Matter: Int. J. Sci. and Tech. Vol. 5 (1) (2019), pp.609-631

Google Scholar

[13] A. Pfennig, A. Kranzmann: Int. J. of Materials Sci. and Eng. IJMSE Vol.7(2)(2019), pp.26-33

Google Scholar

[14] A. Pfennig, M. Wolf: Journal of Physics: Conf. Series JPCS Vol. 1425 (2019) Paper No. 012183

Google Scholar

[15] A. Pfennig, M. Wolf: IOP Conf. Ser.: Mater. Sci. Eng. Vol. 894 012015 (2020), pp.93-98.

Google Scholar

[16] A.M. Elhoud, N.C. Renton, W.F. Deans: Int. J. of Hydrogen Energy Vol. 35 (12) 2010, p.6455–6464

DOI: 10.1016/j.ijhydene.2010.03.056

Google Scholar

[17] H. Luo, C.F. Dong, Z.Y. Liu, M.T.J. Maha, X.G. Li XG (2013) Materials and Corrosion 64 (1) 26–33

Google Scholar

[18] A. Pfennig, M. Wolf: Key Engineering Materials KEM Vol. 929 (2022), pp.35-40

Google Scholar

[19] J. Lv, W. Guo, T. Liang: Journal of Alloys and Compounds Vol. 686 (2016), pp.176-183

Google Scholar

[20] A. Förster et al.: Mar. Pet. Geol. Vol. 27 (2010), p.2156–2172

Google Scholar

[21] W. Luu, P. Liu, J. Wu: Corr. Sci. Vol. 44 (8) (2002), p.1783–1791

Google Scholar

[22] C. San Marchi, B.P. Somerday, J. Zelinski, X. Tang, G.H. Schiroky: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science Vol. 38 A (11) (2007), p.2763–2775

DOI: 10.1007/s11661-007-9286-3

Google Scholar

[23] K. Makhlouf, H. Sidhom, I. Triguia, C. Braham: International Journal of Fatigue Vol. 25 (2) (2003), p.167–179

Google Scholar

[24] H.G. Nelson: In: Treatise on Materials Science and Technology: Embrittlement of Engineering Alloys Vol. 25, edited by C.L. Briant, S.K. Banerji (1983) Academic Press Inc. p.275–359

Google Scholar

[25] C.D. Beachem: Metallurgical Transactions B Vol. 3 (2) (1972), p.441–455

Google Scholar

[26] H. Birnbaum, P. Sofronis: Materials Science and Engineering A Vol.176(1-2) (1994), pp.191-202

Google Scholar

[27] A. Pfennig, A. Gröber, R. Simkin, A. Kranzmann: (2019) Available at SSRN: https://ssrn.com/abstract=3365580

Google Scholar

[28] E. Owczarek, T. Zakroczymski: Acta Materialia Vol. 48 (12) (2000), pp.3059-3070

DOI: 10.1016/s1359-6454(00)00122-1

Google Scholar

[29] A. Turnbull, E. Lembach-Beylegaard, R.B. Hutchings: In: Fourth International Conference Duplex Stainless Steels, Glasgow, edited by S. Scotland, Materials Technology Manager TWI, (1994) Paper 80

Google Scholar

[30] H.H. Lee, H.H. Uhlig: Metallurgical Transactions Vol. 3 (11) (1972), p.949–2957.

Google Scholar